File size: 5,905 Bytes
81b8d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime

# Groq API key (replace with your actual key)
groq_api_key = "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"

# Function to call Groq Llama API
def call_groq_api(prompt):
    url = "https://api.groq.com/v1/chat/completions"
    headers = {
        "Authorization": f"Bearer {groq_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "model": "llama-2-13b-chat",
        "messages": [{"role": "user", "content": prompt}]
    }
    try:
        response = requests.post(url, headers=headers, json=payload)
        response.raise_for_status()  
        return response.json()['choices'][0]['message']['content']
    except requests.exceptions.HTTPError as err:
        return f"HTTP Error: {err}"
    except Exception as err:
        return f"Error: {err}"

# Function to analyze requirements
def analyze_requirement_groq(requirement):
    type_prompt = f"Classify the following requirement as Functional or Non-Functional:\n\n{requirement}\n\nType:"
    req_type = call_groq_api(type_prompt)

    stakeholders_prompt = f"Identify the stakeholders for the following requirement:\n\n{requirement}\n\nStakeholders:"
    stakeholders = call_groq_api(stakeholders_prompt)

    domain_prompt = f"Classify the domain for the following requirement (e.g., Bank, Healthcare, etc.):\n\n{requirement}\n\nDomain:"
    domain = call_groq_api(domain_prompt)

    defects_prompt = f"""Analyze the following requirement and identify ONLY MAJOR defects (e.g., Ambiguity, Incompleteness, etc.). 
    If the requirement is clear and complete, respond with 'No defects.' 
    Requirement: {requirement}
    Defects:"""
    defects = call_groq_api(defects_prompt)

    rewritten = rewrite_requirement_groq(requirement, defects)

    return {
        "Requirement": requirement,
        "Type": req_type,
        "Stakeholders": stakeholders,
        "Domain": domain,
        "Defects": defects,
        "Rewritten": rewritten
    }

# Function to rewrite requirement concisely
def rewrite_requirement_groq(requirement, defects):
    if "no defects" in defects.lower():
        return "No modification needed."

    prompt = f"""Rewrite the following requirement to address the defects listed below. Ensure the rewritten requirement is clear, concise, and free of defects. It should be no more than 1-2 sentences.
    
    Original Requirement: {requirement}
    
    Defects: {defects}
    
    Rewritten Requirement:"""
    response = call_groq_api(prompt)
    return response.strip()

# Function to generate a PDF report
def generate_pdf_report_groq(results):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)

    pdf.set_font("Arial", 'B', 16)
    pdf.cell(200, 10, txt="AI Powered Requirement Analysis - Groq Llama", ln=True, align='C')
    pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
    pdf.ln(10)

    pdf.set_font("Arial", size=12)
    for i, result in enumerate(results, start=1):
        if pdf.get_y() > 250:
            pdf.add_page()
            pdf.set_font("Arial", 'B', 16)
            pdf.cell(200, 10, txt="AI Powered Requirement Analysis - Groq Llama", ln=True, align='C')
            pdf.set_font("Arial", size=12)
            pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
            pdf.ln(10)

        pdf.set_font("Arial", 'B', 14)
        pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
        pdf.set_font("Arial", size=12)
        pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
        pdf.multi_cell(200, 10, txt=f"Stakeholders: {result['Stakeholders']}", align='L')
        pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
        pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
        pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
        pdf.multi_cell(200, 10, txt="-" * 50, align='L')
        pdf.ln(5)

    pdf_output = "requirements_report_groq.pdf"
    pdf.output(pdf_output)
    return pdf_output

# Streamlit app
def main():
    st.title("AI Requirement Analysis - Groq Llama")
    st.markdown("**Team Name:** Sadia, Areeba, Rabbia, Tesmia")
    st.markdown("**Model:** Groq Llama")

    input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
    requirements = []
    if input_text:
        requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]

    if st.button("Analyze Requirements"):
        if not requirements:
            st.warning("Please enter requirements.")
        else:
            results = []
            for req in requirements:
                if req.strip():
                    results.append(analyze_requirement_groq(req.strip()))

            st.subheader("Analysis Results")
            for i, result in enumerate(results, start=1):
                st.write(f"### Requirement R{i}: {result['Requirement']}")
                st.write(f"**Type:** {result['Type']}")
                st.write(f"**Stakeholders:** {result['Stakeholders']}")
                st.write(f"**Domain:** {result['Domain']}")
                st.write(f"**Defects:** {result['Defects']}")
                st.write(f"**Rewritten:** {result['Rewritten']}")
                st.write("---")

            pdf_report = generate_pdf_report_groq(results)
            with open(pdf_report, "rb") as f:
                st.download_button(
                    label="Download PDF Report",
                    data=f,
                    file_name="requirements_report_groq.pdf",
                    mime="application/pdf"
                )

if __name__ == "__main__":
    main()