File size: 5,905 Bytes
81b8d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime
# Groq API key (replace with your actual key)
groq_api_key = "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"
# Function to call Groq Llama API
def call_groq_api(prompt):
url = "https://api.groq.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
payload = {
"model": "llama-2-13b-chat",
"messages": [{"role": "user", "content": prompt}]
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()['choices'][0]['message']['content']
except requests.exceptions.HTTPError as err:
return f"HTTP Error: {err}"
except Exception as err:
return f"Error: {err}"
# Function to analyze requirements
def analyze_requirement_groq(requirement):
type_prompt = f"Classify the following requirement as Functional or Non-Functional:\n\n{requirement}\n\nType:"
req_type = call_groq_api(type_prompt)
stakeholders_prompt = f"Identify the stakeholders for the following requirement:\n\n{requirement}\n\nStakeholders:"
stakeholders = call_groq_api(stakeholders_prompt)
domain_prompt = f"Classify the domain for the following requirement (e.g., Bank, Healthcare, etc.):\n\n{requirement}\n\nDomain:"
domain = call_groq_api(domain_prompt)
defects_prompt = f"""Analyze the following requirement and identify ONLY MAJOR defects (e.g., Ambiguity, Incompleteness, etc.).
If the requirement is clear and complete, respond with 'No defects.'
Requirement: {requirement}
Defects:"""
defects = call_groq_api(defects_prompt)
rewritten = rewrite_requirement_groq(requirement, defects)
return {
"Requirement": requirement,
"Type": req_type,
"Stakeholders": stakeholders,
"Domain": domain,
"Defects": defects,
"Rewritten": rewritten
}
# Function to rewrite requirement concisely
def rewrite_requirement_groq(requirement, defects):
if "no defects" in defects.lower():
return "No modification needed."
prompt = f"""Rewrite the following requirement to address the defects listed below. Ensure the rewritten requirement is clear, concise, and free of defects. It should be no more than 1-2 sentences.
Original Requirement: {requirement}
Defects: {defects}
Rewritten Requirement:"""
response = call_groq_api(prompt)
return response.strip()
# Function to generate a PDF report
def generate_pdf_report_groq(results):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis - Groq Llama", ln=True, align='C')
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10)
pdf.set_font("Arial", size=12)
for i, result in enumerate(results, start=1):
if pdf.get_y() > 250:
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis - Groq Llama", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10)
pdf.set_font("Arial", 'B', 14)
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
pdf.set_font("Arial", size=12)
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
pdf.multi_cell(200, 10, txt=f"Stakeholders: {result['Stakeholders']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
pdf.multi_cell(200, 10, txt="-" * 50, align='L')
pdf.ln(5)
pdf_output = "requirements_report_groq.pdf"
pdf.output(pdf_output)
return pdf_output
# Streamlit app
def main():
st.title("AI Requirement Analysis - Groq Llama")
st.markdown("**Team Name:** Sadia, Areeba, Rabbia, Tesmia")
st.markdown("**Model:** Groq Llama")
input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
requirements = []
if input_text:
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]
if st.button("Analyze Requirements"):
if not requirements:
st.warning("Please enter requirements.")
else:
results = []
for req in requirements:
if req.strip():
results.append(analyze_requirement_groq(req.strip()))
st.subheader("Analysis Results")
for i, result in enumerate(results, start=1):
st.write(f"### Requirement R{i}: {result['Requirement']}")
st.write(f"**Type:** {result['Type']}")
st.write(f"**Stakeholders:** {result['Stakeholders']}")
st.write(f"**Domain:** {result['Domain']}")
st.write(f"**Defects:** {result['Defects']}")
st.write(f"**Rewritten:** {result['Rewritten']}")
st.write("---")
pdf_report = generate_pdf_report_groq(results)
with open(pdf_report, "rb") as f:
st.download_button(
label="Download PDF Report",
data=f,
file_name="requirements_report_groq.pdf",
mime="application/pdf"
)
if __name__ == "__main__":
main()
|