|
import streamlit as st |
|
import requests |
|
from fpdf import FPDF |
|
import os |
|
import time |
|
from datetime import datetime |
|
import groq |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
mistral_api_key = os.getenv("MISTRAL_API_KEY", "gz6lDXokxgR6cLY72oomALWcm7vhjRzQ") |
|
groq_api_key = os.getenv("GROQ_API_KEY", "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") |
|
|
|
|
|
groq_client = groq.Client(api_key=groq_api_key) |
|
|
|
|
|
def call_mistral_api(prompt): |
|
start_time = time.time() |
|
url = "https://api.mistral.ai/v1/chat/completions" |
|
headers = { |
|
"Authorization": f"Bearer {mistral_api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
payload = { |
|
"model": "mistral-medium", |
|
"messages": [ |
|
{"role": "user", "content": prompt} |
|
] |
|
} |
|
try: |
|
response = requests.post(url, headers=headers, json=payload) |
|
response.raise_for_status() |
|
end_time = time.time() |
|
speed = end_time - start_time |
|
content = response.json()['choices'][0]['message']['content'] |
|
return content, speed |
|
except requests.exceptions.HTTPError as err: |
|
if response.status_code == 429: |
|
st.warning("Rate limit exceeded. Please wait a few seconds and try again.") |
|
time.sleep(5) |
|
return call_mistral_api(prompt) |
|
return f"HTTP Error: {err}", 0 |
|
except Exception as err: |
|
return f"Error: {err}", 0 |
|
|
|
|
|
def call_groq_api(prompt): |
|
start_time = time.time() |
|
try: |
|
response = groq_client.chat.completions.create( |
|
model="llama-3.3-70b-versatile", |
|
messages=[ |
|
{"role": "user", "content": prompt} |
|
] |
|
) |
|
end_time = time.time() |
|
speed = end_time - start_time |
|
content = response.choices[0].message.content |
|
return content, speed |
|
except Exception as err: |
|
st.error(f"Error: {err}") |
|
return f"Error: {err}", 0 |
|
|
|
|
|
def analyze_requirement(requirement): |
|
|
|
type_prompt = f"Classify the following requirement as Functional or Non-Functional in one word:\n\n{requirement}\n\nType:" |
|
req_type, type_speed = call_mistral_api(type_prompt) |
|
req_type = req_type.strip() |
|
|
|
domain_prompt = f"Classify the domain for the following requirement in one word (e.g., E-commerce, Education, etc.):\n\n{requirement}\n\nDomain:" |
|
domain, domain_speed = call_mistral_api(domain_prompt) |
|
domain = domain.strip() |
|
|
|
|
|
defects_prompt = f"""List ONLY the major defects in the following requirement (e.g., Ambiguity, Incompleteness, etc.) in 1-2 words each:\n\n{requirement}\n\nDefects:""" |
|
defects, defects_speed = call_groq_api(defects_prompt) |
|
defects = defects.strip() |
|
|
|
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:""" |
|
rewritten, rewritten_speed = call_groq_api(rewritten_prompt) |
|
rewritten = rewritten.strip() |
|
|
|
|
|
total_speed = type_speed + domain_speed + defects_speed + rewritten_speed |
|
|
|
return { |
|
"Requirement": requirement, |
|
"Type": req_type, |
|
"Domain": domain, |
|
"Defects": defects, |
|
"Rewritten": rewritten, |
|
"Total_Speed": total_speed |
|
} |
|
|
|
|
|
def calculate_accuracy(results): |
|
|
|
|
|
return 80.0 |
|
|
|
|
|
def generate_pdf_report(results): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", size=12) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 50) |
|
pdf.set_text_color(230, 230, 230) |
|
pdf.rotate(45) |
|
pdf.text(60, 150, "AI Powered Requirement Analysis") |
|
pdf.rotate(0) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 16) |
|
pdf.set_text_color(0, 0, 0) |
|
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C') |
|
pdf.set_font("Arial", size=12) |
|
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') |
|
pdf.ln(10) |
|
|
|
|
|
pdf.set_font("Arial", size=12) |
|
for i, result in enumerate(results, start=1): |
|
if pdf.get_y() > 250: |
|
pdf.add_page() |
|
pdf.set_font("Arial", 'B', 16) |
|
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C') |
|
pdf.set_font("Arial", size=12) |
|
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') |
|
pdf.ln(10) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 14) |
|
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L') |
|
pdf.set_font("Arial", size=12) |
|
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Total Speed: {result['Total_Speed']:.2f}s", align='L') |
|
pdf.multi_cell(200, 10, txt="-" * 50, align='L') |
|
pdf.ln(5) |
|
|
|
pdf_output = "requirements_report.pdf" |
|
pdf.output(pdf_output) |
|
return pdf_output |
|
|
|
|
|
def main(): |
|
st.title("AI Powered Requirement Analysis and Defect Detection") |
|
st.markdown("**Team Name:** Sadia, Areeba, Rabbia, Tesmia") |
|
st.markdown("**Models:** Mistral (Classification & Domain) + Groq (Defects & Rewriting)") |
|
|
|
|
|
input_text = st.text_area("Enter your requirements (one per line or separated by periods):") |
|
requirements = [] |
|
if input_text: |
|
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()] |
|
|
|
|
|
if st.button("Analyze Requirements"): |
|
if not requirements: |
|
st.warning("Please enter requirements.") |
|
else: |
|
results = [] |
|
total_speed = 0 |
|
for req in requirements: |
|
if req.strip(): |
|
result = analyze_requirement(req.strip()) |
|
results.append(result) |
|
total_speed += result["Total_Speed"] |
|
|
|
|
|
accuracy = calculate_accuracy(results) |
|
|
|
|
|
st.subheader("Performance Metrics") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric("Total Speed", f"{total_speed:.2f} seconds") |
|
with col2: |
|
st.metric("Accuracy", f"{accuracy:.2f}%") |
|
|
|
|
|
st.subheader("Visualization") |
|
metrics_data = { |
|
"Metric": ["Total Speed", "Accuracy"], |
|
"Value": [total_speed, accuracy] |
|
} |
|
df = pd.DataFrame(metrics_data) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
ax.bar(df["Metric"], df["Value"], color=["blue", "green"]) |
|
ax.set_ylabel("Value") |
|
ax.set_title("Performance Metrics") |
|
st.pyplot(fig) |
|
|
|
|
|
st.table(df) |
|
|
|
|
|
pdf_report = generate_pdf_report(results) |
|
with open(pdf_report, "rb") as f: |
|
st.download_button( |
|
label="Download PDF Report", |
|
data=f, |
|
file_name="requirements_report.pdf", |
|
mime="application/pdf" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |