import streamlit as st import requests from fpdf import FPDF import os import time from datetime import datetime import groq # API keys (replace with your keys or use environment variables) mistral_api_key = os.getenv("MISTRAL_API_KEY", "gz6lDXokxgR6cLY72oomALWcm7vhjRzQ") groq_api_key = os.getenv("GROQ_API_KEY", "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") # Initialize Groq client groq_client = groq.Client(api_key=groq_api_key) # Function to call Mistral API def call_mistral_api(prompt): url = "https://api.mistral.ai/v1/chat/completions" headers = { "Authorization": f"Bearer {mistral_api_key}", "Content-Type": "application/json" } payload = { "model": "mistral-medium", "messages": [ {"role": "user", "content": prompt} ] } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() return response.json()['choices'][0]['message']['content'] except requests.exceptions.HTTPError as err: if response.status_code == 429: st.warning("Rate limit exceeded. Please wait a few seconds and try again.") time.sleep(5) return call_mistral_api(prompt) return f"HTTP Error: {err}" except Exception as err: return f"Error: {err}" # Function to call Groq API def call_groq_api(prompt): try: response = groq_client.chat.completions.create( model="llama3-70b-8192", messages=[ {"role": "user", "content": prompt} ] ) return response.choices[0].message.content except Exception as err: st.error(f"Error: {err}") return f"Error: {err}" # Function to analyze a single requirement def analyze_requirement(requirement): try: # 1. Classify requirement type type_prompt = f"Classify exactly as either 'Functional' or 'Non-Functional':\n{requirement}" req_type = call_mistral_api(type_prompt).strip() # 2. Identify domain domain_prompt = f"Identify the business domain in one word (e.g., Healthcare, Finance):\n{requirement}" domain = call_mistral_api(domain_prompt).strip() # 3. Detect defects - more explicit prompt defects_prompt = f"""Analyze this software requirement and list EXACTLY 3 defects using ONLY these formats: - Ambiguity: [specific unclear part] - Incompleteness: [missing element] - Unverifiability: [unmeasurable aspect] Requirement: {requirement} Defects:""" defects_response = call_groq_api(defects_prompt).strip() # Process defects - more robust parsing defects = [] if "API Error" not in defects_response: # Extract all lines starting with "-" defect_lines = [line.strip() for line in defects_response.split("\n") if line.strip().startswith("-")] if defect_lines: defects = [line[2:].split(":")[0].strip() for line in defect_lines[:3]] # Take first 3 defects else: defects = ["No defects found"] else: defects = ["Analysis error"] # 4. Rewrite requirement - more constrained prompt rewrite_prompt = f"""Improve this requirement by fixing defects while keeping it concise (1 sentence): Original: {requirement} Improved:""" rewritten = call_groq_api(rewrite_prompt).strip() # Clean rewritten output if "Improved:" in rewritten: rewritten = rewritten.split("Improved:")[-1].strip() return { "Requirement": requirement, "Type": req_type, "Domain": domain, "Defects": defects if defects else ["No defects found"], "Rewritten": rewritten if rewritten and "API Error" not in rewritten else requirement } except Exception as e: return { "Requirement": requirement, "Type": "Error", "Domain": "Error", "Defects": ["Analysis failed"], "Rewritten": requirement } # Function to generate a PDF report def generate_pdf_report(results): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) # Add watermark pdf.set_font("Arial", 'B', 50) pdf.set_text_color(230, 230, 230) pdf.rotate(45) pdf.text(60, 150, "AI Powered Requirement Analysis") pdf.rotate(0) # Add title and date/time pdf.set_font("Arial", 'B', 16) pdf.set_text_color(0, 0, 0) pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C') pdf.set_font("Arial", size=12) pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') pdf.ln(10) # Add requirements analysis pdf.set_font("Arial", size=12) for i, result in enumerate(results, start=1): if pdf.get_y() > 250: pdf.add_page() pdf.set_font("Arial", 'B', 16) pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C') pdf.set_font("Arial", size=12) pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') pdf.ln(10) pdf.set_font("Arial", 'B', 14) pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L') pdf.set_font("Arial", size=12) pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L') pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L') pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L') pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L') pdf.multi_cell(200, 10, txt="-" * 50, align='L') pdf.ln(5) pdf_output = "requirements_report.pdf" pdf.output(pdf_output) return pdf_output # Custom CSS for professional styling st.markdown(""" """, unsafe_allow_html=True) def main(): # Professional Header Section with st.container(): st.markdown('
AI-Powered Requirement Analysis System • Final Year Project • Computer Science Department
🚀 Powered by Mistral AI & Groq • 🛠️ Developed by Team Four