Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import openai
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Set up OpenAI API key
|
11 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
12 |
+
|
13 |
+
# Simple database using pandas DataFrames
|
14 |
+
class SimpleDatabase:
|
15 |
+
def __init__(self):
|
16 |
+
# Sample product data
|
17 |
+
self.products = pd.DataFrame({
|
18 |
+
'product_id': [1, 2, 3, 4, 5],
|
19 |
+
'name': ['Laptop', 'Smartphone', 'Headphones', 'Monitor', 'Keyboard'],
|
20 |
+
'category': ['Electronics', 'Electronics', 'Audio', 'Electronics', 'Accessories'],
|
21 |
+
'price': [1200, 800, 150, 300, 80],
|
22 |
+
'stock': [10, 25, 50, 15, 30]
|
23 |
+
})
|
24 |
+
|
25 |
+
# Sample transactions data
|
26 |
+
self.transactions = pd.DataFrame({
|
27 |
+
'transaction_id': [101, 102, 103, 104, 105, 106, 107],
|
28 |
+
'product_id': [1, 2, 3, 1, 5, 2, 4],
|
29 |
+
'quantity': [1, 2, 3, 1, 2, 1, 2],
|
30 |
+
'date': ['2025-04-29', '2025-04-29', '2025-04-28', '2025-04-28', '2025-04-27', '2025-04-29', '2025-04-29'],
|
31 |
+
'revenue': [1200, 1600, 450, 1200, 160, 800, 600]
|
32 |
+
})
|
33 |
+
|
34 |
+
def query_database(self, query_type, **kwargs):
|
35 |
+
"""Execute queries on the database based on query type"""
|
36 |
+
if query_type == "product_info":
|
37 |
+
if 'product_name' in kwargs:
|
38 |
+
return self.products[self.products['name'].str.lower() == kwargs['product_name'].lower()]
|
39 |
+
elif 'product_id' in kwargs:
|
40 |
+
return self.products[self.products['product_id'] == kwargs['product_id']]
|
41 |
+
else:
|
42 |
+
return self.products
|
43 |
+
|
44 |
+
elif query_type == "max_revenue_product":
|
45 |
+
date_filter = kwargs.get('date', '2025-04-29') # Default to today
|
46 |
+
|
47 |
+
# Group by product_id and calculate total revenue for the specified date
|
48 |
+
daily_revenue = self.transactions[self.transactions['date'] == date_filter].groupby(
|
49 |
+
'product_id')['revenue'].sum().reset_index()
|
50 |
+
|
51 |
+
if daily_revenue.empty:
|
52 |
+
return "No sales data found for that date."
|
53 |
+
|
54 |
+
# Find the product with max revenue
|
55 |
+
max_revenue_product_id = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['product_id']
|
56 |
+
max_revenue = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['revenue']
|
57 |
+
|
58 |
+
# Get product details
|
59 |
+
product_details = self.products[self.products['product_id'] == max_revenue_product_id].iloc[0]
|
60 |
+
|
61 |
+
return {
|
62 |
+
'product_name': product_details['name'],
|
63 |
+
'revenue': max_revenue,
|
64 |
+
'date': date_filter
|
65 |
+
}
|
66 |
+
|
67 |
+
elif query_type == "inventory_check":
|
68 |
+
product_name = kwargs.get('product_name')
|
69 |
+
if product_name:
|
70 |
+
product = self.products[self.products['name'].str.lower() == product_name.lower()]
|
71 |
+
if not product.empty:
|
72 |
+
return {'product': product_name, 'stock': product.iloc[0]['stock']}
|
73 |
+
return f"Product '{product_name}' not found."
|
74 |
+
return self.products[['name', 'stock']]
|
75 |
+
|
76 |
+
return "Query type not supported"
|
77 |
+
|
78 |
+
class QueryRouter:
|
79 |
+
def __init__(self):
|
80 |
+
"""Initialize the query router"""
|
81 |
+
pass
|
82 |
+
|
83 |
+
def _classify_query(self, query):
|
84 |
+
"""Classify the query to determine which agent should handle it"""
|
85 |
+
# Use OpenAI to classify the query
|
86 |
+
response = openai.chat.completions.create(
|
87 |
+
model="gpt-3.5-turbo",
|
88 |
+
messages=[
|
89 |
+
{"role": "system", "content": """
|
90 |
+
You are a query classifier for a shop assistant system.
|
91 |
+
Classify customer queries into one of these categories:
|
92 |
+
- max_revenue_product: Questions about which product generated the most revenue (today or on a specific date)
|
93 |
+
- inventory_check: Questions about product availability or stock levels
|
94 |
+
- product_info: Questions about product details, pricing, etc.
|
95 |
+
- general_knowledge: Questions that require general knowledge not related to specific shop data
|
96 |
+
|
97 |
+
Return ONLY the category as a single word without any explanation.
|
98 |
+
"""},
|
99 |
+
{"role": "user", "content": query}
|
100 |
+
],
|
101 |
+
temperature=0
|
102 |
+
)
|
103 |
+
|
104 |
+
# Extract the query type from the response
|
105 |
+
query_type = response.choices[0].message.content.strip().lower()
|
106 |
+
return query_type
|
107 |
+
|
108 |
+
def _extract_parameters(self, query, query_type):
|
109 |
+
"""Extract relevant parameters from the query based on query type"""
|
110 |
+
# Use OpenAI to extract parameters
|
111 |
+
prompt_content = f"""
|
112 |
+
Extract parameters from this customer query: "{query}"
|
113 |
+
Query type: {query_type}
|
114 |
+
|
115 |
+
For max_revenue_product:
|
116 |
+
- date (in YYYY-MM-DD format, extract "today" as today's date which is 2025-04-29)
|
117 |
+
|
118 |
+
For inventory_check or product_info:
|
119 |
+
- product_name (the name of the product being asked about)
|
120 |
+
|
121 |
+
Return ONLY a valid JSON object with the extracted parameters, nothing else.
|
122 |
+
Example: {{"product_name": "laptop"}} or {{"date": "2025-04-29"}}
|
123 |
+
"""
|
124 |
+
|
125 |
+
response = openai.chat.completions.create(
|
126 |
+
model="gpt-3.5-turbo",
|
127 |
+
messages=[
|
128 |
+
{"role": "system", "content": "You extract parameters from customer queries for a shop assistant."},
|
129 |
+
{"role": "user", "content": prompt_content}
|
130 |
+
],
|
131 |
+
temperature=0,
|
132 |
+
response_format={"type": "json_object"}
|
133 |
+
)
|
134 |
+
|
135 |
+
# Parse the JSON response
|
136 |
+
import json
|
137 |
+
try:
|
138 |
+
parameters = json.loads(response.choices[0].message.content)
|
139 |
+
return parameters
|
140 |
+
except json.JSONDecodeError:
|
141 |
+
return {}
|
142 |
+
|
143 |
+
def _handle_general_knowledge(self, query):
|
144 |
+
"""Handle general knowledge queries using OpenAI"""
|
145 |
+
response = openai.chat.completions.create(
|
146 |
+
model="gpt-3.5-turbo",
|
147 |
+
messages=[
|
148 |
+
{"role": "system", "content": """
|
149 |
+
You are a helpful assistant for a shop. Answer the customer's question
|
150 |
+
using your general knowledge. Keep answers brief and focused.
|
151 |
+
"""},
|
152 |
+
{"role": "user", "content": query}
|
153 |
+
],
|
154 |
+
temperature=0.7,
|
155 |
+
max_tokens=150
|
156 |
+
)
|
157 |
+
|
158 |
+
return response.choices[0].message.content
|
159 |
+
|
160 |
+
def _format_response(self, query_type, data):
|
161 |
+
"""Format the response based on query type and data"""
|
162 |
+
if query_type == "max_revenue_product":
|
163 |
+
if isinstance(data, str):
|
164 |
+
return data
|
165 |
+
return f"The product with the highest revenue on {data['date']} is {data['product_name']} with ${data['revenue']} in sales."
|
166 |
+
|
167 |
+
elif query_type == "inventory_check":
|
168 |
+
if isinstance(data, str):
|
169 |
+
return data
|
170 |
+
if isinstance(data, dict) and 'product' in data:
|
171 |
+
return f"We currently have {data['stock']} units of {data['product']} in stock."
|
172 |
+
return "Here's our current inventory: " + ", ".join([f"{row['name']}: {row['stock']} units" for _, row in data.iterrows()])
|
173 |
+
|
174 |
+
elif query_type == "product_info":
|
175 |
+
if data.empty:
|
176 |
+
return "Product not found."
|
177 |
+
if len(data) == 1:
|
178 |
+
product = data.iloc[0]
|
179 |
+
return f"{product['name']} ({product['category']}): ${product['price']}. We have {product['stock']} units in stock."
|
180 |
+
return "Here are our products: " + ", ".join([f"{row['name']}: ${row['price']}" for _, row in data.iterrows()])
|
181 |
+
|
182 |
+
return str(data)
|
183 |
+
|
184 |
+
def process(self, query, db):
|
185 |
+
"""Process the query and return a response"""
|
186 |
+
# Classify the query
|
187 |
+
query_type = self._classify_query(query)
|
188 |
+
|
189 |
+
# If it's a general knowledge query, handle it differently
|
190 |
+
if query_type == "general_knowledge":
|
191 |
+
return self._handle_general_knowledge(query)
|
192 |
+
|
193 |
+
# Extract parameters from the query
|
194 |
+
parameters = self._extract_parameters(query, query_type)
|
195 |
+
|
196 |
+
# Query the database
|
197 |
+
result = db.query_database(query_type, **parameters)
|
198 |
+
|
199 |
+
# Format the response
|
200 |
+
response = self._format_response(query_type, result)
|
201 |
+
|
202 |
+
return response
|
203 |
+
|
204 |
+
# Initialize database and router
|
205 |
+
db = SimpleDatabase()
|
206 |
+
router = QueryRouter()
|
207 |
+
|
208 |
+
def process_query(query):
|
209 |
+
"""Process the user query and return a response"""
|
210 |
+
if not query.strip():
|
211 |
+
return "Please ask a question about our shop products or services."
|
212 |
+
|
213 |
+
response = router.process(query, db)
|
214 |
+
return response
|
215 |
+
|
216 |
+
# Create Gradio interface
|
217 |
+
demo = gr.Interface(
|
218 |
+
fn=process_query,
|
219 |
+
inputs=gr.Textbox(
|
220 |
+
placeholder="Ask about product pricing, inventory, sales, or any other question...",
|
221 |
+
label="Customer Query"
|
222 |
+
),
|
223 |
+
outputs=gr.Textbox(label="Shop Assistant Response"),
|
224 |
+
title="Shop Voice Box Assistant",
|
225 |
+
description="Ask questions about products, inventory, sales, or general questions.",
|
226 |
+
examples=[
|
227 |
+
["What's the maximum revenue product today?"],
|
228 |
+
["How many laptops do we have in stock?"],
|
229 |
+
["Tell me about the smartphone."],
|
230 |
+
["What's the weather like today?"]
|
231 |
+
]
|
232 |
+
)
|
233 |
+
|
234 |
+
# Launch the app
|
235 |
+
if __name__ == "__main__":
|
236 |
+
demo.launch()
|