Update app.py
Browse files
app.py
CHANGED
@@ -1,265 +1,71 @@
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
import json
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
import httpx
|
7 |
|
8 |
-
# Load environment
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Helper function for OpenAI API calls
|
15 |
-
def openai_chat_completion(messages, temperature=0, response_format=None, max_tokens=None):
|
16 |
-
"""Make a direct API call to OpenAI without using the client library"""
|
17 |
-
url = "https://api.openai.com/v1/chat/completions"
|
18 |
-
|
19 |
-
headers = {
|
20 |
-
"Content-Type": "application/json",
|
21 |
-
"Authorization": f"Bearer {api_key}"
|
22 |
-
}
|
23 |
-
|
24 |
-
payload = {
|
25 |
-
"model": "gpt-3.5-turbo",
|
26 |
-
"messages": messages,
|
27 |
-
"temperature": temperature
|
28 |
-
}
|
29 |
-
|
30 |
-
if response_format:
|
31 |
-
payload["response_format"] = response_format
|
32 |
-
|
33 |
-
if max_tokens:
|
34 |
-
payload["max_tokens"] = max_tokens
|
35 |
-
|
36 |
-
response = httpx.post(url, json=payload, headers=headers)
|
37 |
-
|
38 |
-
if response.status_code != 200:
|
39 |
-
raise Exception(f"OpenAI API error: {response.status_code} - {response.text}")
|
40 |
-
|
41 |
-
return response.json()
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
'price': [1200, 800, 150, 300, 80],
|
52 |
-
'stock': [10, 25, 50, 15, 30]
|
53 |
-
})
|
54 |
-
|
55 |
-
# Sample transactions data
|
56 |
-
self.transactions = pd.DataFrame({
|
57 |
-
'transaction_id': [101, 102, 103, 104, 105, 106, 107],
|
58 |
-
'product_id': [1, 2, 3, 1, 5, 2, 4],
|
59 |
-
'quantity': [1, 2, 3, 1, 2, 1, 2],
|
60 |
-
'date': ['2025-04-29', '2025-04-29', '2025-04-28', '2025-04-28', '2025-04-27', '2025-04-29', '2025-04-29'],
|
61 |
-
'revenue': [1200, 1600, 450, 1200, 160, 800, 600]
|
62 |
-
})
|
63 |
-
|
64 |
-
def query_database(self, query_type, **kwargs):
|
65 |
-
"""Execute queries on the database based on query type"""
|
66 |
-
if query_type == "product_info":
|
67 |
-
if 'product_name' in kwargs:
|
68 |
-
return self.products[self.products['name'].str.lower() == kwargs['product_name'].lower()]
|
69 |
-
elif 'product_id' in kwargs:
|
70 |
-
return self.products[self.products['product_id'] == kwargs['product_id']]
|
71 |
-
else:
|
72 |
-
return self.products
|
73 |
-
|
74 |
-
elif query_type == "max_revenue_product":
|
75 |
-
date_filter = kwargs.get('date', '2025-04-29') # Default to today
|
76 |
-
|
77 |
-
# Group by product_id and calculate total revenue for the specified date
|
78 |
-
daily_revenue = self.transactions[self.transactions['date'] == date_filter].groupby(
|
79 |
-
'product_id')['revenue'].sum().reset_index()
|
80 |
-
|
81 |
-
if daily_revenue.empty:
|
82 |
-
return "No sales data found for that date."
|
83 |
-
|
84 |
-
# Find the product with max revenue
|
85 |
-
max_revenue_product_id = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['product_id']
|
86 |
-
max_revenue = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['revenue']
|
87 |
-
|
88 |
-
# Get product details
|
89 |
-
product_details = self.products[self.products['product_id'] == max_revenue_product_id].iloc[0]
|
90 |
-
|
91 |
-
return {
|
92 |
-
'product_name': product_details['name'],
|
93 |
-
'revenue': max_revenue,
|
94 |
-
'date': date_filter
|
95 |
-
}
|
96 |
-
|
97 |
-
elif query_type == "inventory_check":
|
98 |
-
product_name = kwargs.get('product_name')
|
99 |
-
if product_name:
|
100 |
-
product = self.products[self.products['name'].str.lower() == product_name.lower()]
|
101 |
-
if not product.empty:
|
102 |
-
return {'product': product_name, 'stock': product.iloc[0]['stock']}
|
103 |
-
return f"Product '{product_name}' not found."
|
104 |
-
return self.products[['name', 'stock']]
|
105 |
-
|
106 |
-
return "Query type not supported"
|
107 |
|
108 |
-
class QueryRouter:
|
109 |
-
def __init__(self):
|
110 |
-
"""Initialize the query router"""
|
111 |
-
pass
|
112 |
-
|
113 |
-
def _classify_query(self, query):
|
114 |
-
"""Classify the query to determine which agent should handle it"""
|
115 |
-
# Use OpenAI to classify the query
|
116 |
-
messages = [
|
117 |
-
{"role": "system", "content": """
|
118 |
-
You are a query classifier for a shop assistant system.
|
119 |
-
Classify customer queries into one of these categories:
|
120 |
-
- max_revenue_product: Questions about which product generated the most revenue (today or on a specific date)
|
121 |
-
- inventory_check: Questions about product availability or stock levels
|
122 |
-
- product_info: Questions about product details, pricing, etc.
|
123 |
-
- general_knowledge: Questions that require general knowledge not related to specific shop data
|
124 |
-
|
125 |
-
Return ONLY the category as a single word without any explanation.
|
126 |
-
"""},
|
127 |
-
{"role": "user", "content": query}
|
128 |
-
]
|
129 |
-
|
130 |
-
response = openai_chat_completion(messages, temperature=0)
|
131 |
-
|
132 |
-
# Extract the query type from the response
|
133 |
-
query_type = response["choices"][0]["message"]["content"].strip().lower()
|
134 |
-
return query_type
|
135 |
-
|
136 |
-
def _extract_parameters(self, query, query_type):
|
137 |
-
"""Extract relevant parameters from the query based on query type"""
|
138 |
-
# Use OpenAI to extract parameters
|
139 |
-
prompt_content = f"""
|
140 |
-
Extract parameters from this customer query: "{query}"
|
141 |
-
Query type: {query_type}
|
142 |
-
|
143 |
-
For max_revenue_product:
|
144 |
-
- date (in YYYY-MM-DD format, extract "today" as today's date which is 2025-04-29)
|
145 |
-
|
146 |
-
For inventory_check or product_info:
|
147 |
-
- product_name (the name of the product being asked about)
|
148 |
-
|
149 |
-
Return ONLY a valid JSON object with the extracted parameters, nothing else.
|
150 |
-
Example: {{"product_name": "laptop"}} or {{"date": "2025-04-29"}}
|
151 |
-
"""
|
152 |
-
|
153 |
-
messages = [
|
154 |
-
{"role": "system", "content": "You extract parameters from customer queries for a shop assistant."},
|
155 |
-
{"role": "user", "content": prompt_content}
|
156 |
-
]
|
157 |
-
|
158 |
-
response = openai_chat_completion(messages, temperature=0, response_format={"type": "json_object"})
|
159 |
-
|
160 |
-
# Parse the JSON response
|
161 |
-
try:
|
162 |
-
parameters = json.loads(response["choices"][0]["message"]["content"])
|
163 |
-
return parameters
|
164 |
-
except json.JSONDecodeError:
|
165 |
-
return {}
|
166 |
-
|
167 |
-
# Parse the JSON response
|
168 |
-
import json
|
169 |
-
try:
|
170 |
-
parameters = json.loads(response.choices[0].message.content)
|
171 |
-
return parameters
|
172 |
-
except json.JSONDecodeError:
|
173 |
-
return {}
|
174 |
-
|
175 |
-
def _handle_general_knowledge(self, query):
|
176 |
-
"""Handle general knowledge queries using OpenAI"""
|
177 |
-
messages = [
|
178 |
-
{"role": "system", "content": """
|
179 |
-
You are a helpful assistant for a shop. Answer the customer's question
|
180 |
-
using your general knowledge. Keep answers brief and focused.
|
181 |
-
"""},
|
182 |
-
{"role": "user", "content": query}
|
183 |
-
]
|
184 |
-
|
185 |
-
response = openai_chat_completion(messages, temperature=0.7, max_tokens=150)
|
186 |
-
|
187 |
-
return response["choices"][0]["message"]["content"]
|
188 |
-
|
189 |
-
def _format_response(self, query_type, data):
|
190 |
-
"""Format the response based on query type and data"""
|
191 |
-
if query_type == "max_revenue_product":
|
192 |
-
if isinstance(data, str):
|
193 |
-
return data
|
194 |
-
return f"The product with the highest revenue on {data['date']} is {data['product_name']} with ${data['revenue']} in sales."
|
195 |
-
|
196 |
-
elif query_type == "inventory_check":
|
197 |
-
if isinstance(data, str):
|
198 |
-
return data
|
199 |
-
if isinstance(data, dict) and 'product' in data:
|
200 |
-
return f"We currently have {data['stock']} units of {data['product']} in stock."
|
201 |
-
return "Here's our current inventory: " + ", ".join([f"{row['name']}: {row['stock']} units" for _, row in data.iterrows()])
|
202 |
-
|
203 |
-
elif query_type == "product_info":
|
204 |
-
if data.empty:
|
205 |
-
return "Product not found."
|
206 |
-
if len(data) == 1:
|
207 |
-
product = data.iloc[0]
|
208 |
-
return f"{product['name']} ({product['category']}): ${product['price']}. We have {product['stock']} units in stock."
|
209 |
-
return "Here are our products: " + ", ".join([f"{row['name']}: ${row['price']}" for _, row in data.iterrows()])
|
210 |
-
|
211 |
-
return str(data)
|
212 |
-
|
213 |
-
def process(self, query, db):
|
214 |
-
"""Process the query and return a response"""
|
215 |
-
# Classify the query
|
216 |
-
query_type = self._classify_query(query)
|
217 |
-
|
218 |
-
# If it's a general knowledge query, handle it differently
|
219 |
-
if query_type == "general_knowledge":
|
220 |
-
return self._handle_general_knowledge(query)
|
221 |
-
|
222 |
-
# Extract parameters from the query
|
223 |
-
parameters = self._extract_parameters(query, query_type)
|
224 |
-
|
225 |
-
# Query the database
|
226 |
-
result = db.query_database(query_type, **parameters)
|
227 |
-
|
228 |
-
# Format the response
|
229 |
-
response = self._format_response(query_type, result)
|
230 |
-
|
231 |
-
return response
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
def process_query(query):
|
238 |
-
"""Process the user query and return a response"""
|
239 |
-
if not query.strip():
|
240 |
-
return "Please ask a question about our shop products or services."
|
241 |
-
|
242 |
-
response = router.process(query, db)
|
243 |
-
return response
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
)
|
262 |
|
263 |
-
# Launch the app
|
264 |
if __name__ == "__main__":
|
265 |
demo.launch()
|
|
|
1 |
+
```python
|
2 |
import os
|
3 |
+
import sqlite3
|
4 |
+
import requests
|
5 |
+
import openai
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load API keys from environment
|
9 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
10 |
|
11 |
+
# --- Agents ---
|
12 |
+
def db_agent(query: str) -> str:
|
13 |
+
conn = sqlite3.connect("shop.db")
|
14 |
+
cur = conn.cursor()
|
15 |
+
if "max revenue" in query.lower():
|
16 |
+
cur.execute(
|
17 |
+
"""
|
18 |
+
SELECT product, SUM(amount) AS revenue
|
19 |
+
FROM transactions
|
20 |
+
WHERE date = date('now')
|
21 |
+
GROUP BY product
|
22 |
+
ORDER BY revenue DESC
|
23 |
+
LIMIT 1
|
24 |
+
"""
|
25 |
+
)
|
26 |
+
row = cur.fetchone()
|
27 |
+
return f"Top product today: {row[0]} with ₹{row[1]:,.2f}" if row else "No transactions found for today."
|
28 |
+
return None
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def web_search_agent(query: str) -> str:
|
32 |
+
# Example using SerpAPI
|
33 |
+
resp = requests.get(
|
34 |
+
"https://serpapi.com/search",
|
35 |
+
params={"q": query, "api_key": os.getenv("SERPAPI_KEY")}
|
36 |
+
).json()
|
37 |
+
snippet = resp.get("organic_results", [{}])[0].get("snippet", "")
|
38 |
+
return llm_agent(f"Summarize: {snippet}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
def llm_agent(prompt: str) -> str:
|
42 |
+
resp = openai.ChatCompletion.create(
|
43 |
+
model="gpt-4o-mini",
|
44 |
+
messages=[
|
45 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
46 |
+
{"role": "user", "content": prompt}
|
47 |
+
],
|
48 |
+
temperature=0.2
|
49 |
+
)
|
50 |
+
return resp.choices[0].message.content.strip()
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def handle_query(query: str) -> str:
|
54 |
+
q = query.lower()
|
55 |
+
if any(k in q for k in ["max", "revenue", "today", "product"]):
|
56 |
+
return db_agent(query)
|
57 |
+
elif any(k in q for k in ["who", "what", "when", "where"]):
|
58 |
+
return web_search_agent(query)
|
59 |
+
else:
|
60 |
+
return llm_agent(query)
|
61 |
+
|
62 |
+
# --- Gradio UI ---
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("## Shop Voice-Box Assistant")
|
65 |
+
user_input = gr.Textbox(placeholder="Type your question here...", lines=2)
|
66 |
+
submit_btn = gr.Button("Submit")
|
67 |
+
response_box = gr.Textbox(label="Answer")
|
68 |
+
submit_btn.click(fn=handle_query, inputs=user_input, outputs=response_box)
|
|
|
69 |
|
|
|
70 |
if __name__ == "__main__":
|
71 |
demo.launch()
|