from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("meta-llama/Meta-Llama-3.1-8B") def format_prompt(message, history): fixed_prompt= """ """ prompt = f"{fixed_prompt}" for user_prompt, bot_response in history: prompt += f"\n User:{user_prompt}\n LLM Response:{bot_response}" prompt += f"\nUser: {message}\nLLM Response:" return prompt def generate( prompt, history, temperature=0.1, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) yield stream demo = gr.ChatInterface (fn=generate, title="Mood-Based Music Recommender", retry_btn=None, undo_btn=None, clear_btn=None, description="Hi! I'm your music buddy—tell me about your mood and the type of tunes you're in the mood for today!", ) demo.queue().launch()