Spaces:
Sleeping
Sleeping
File size: 9,208 Bytes
77190bb a2b7234 77190bb a2b7234 77190bb b8c50ab 77190bb 122b45d 77190bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import multiprocessing
import concurrent.futures
# from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.vectorstores import FAISS
from langchain_community.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread
class MultiAgentRAG:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.create_faiss_index()
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(3):
print(all_splits[i].page_content)
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
return tokenizer, model
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
return generated_text
except Exception as e:
print(f"Error in generate_response_with_timeout: {str(e)}")
return "Text generation process encountered an error"
def retrieval_agent(self, query):
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
content = ""
for idx, distance in zip(indices[0], distances[0]):
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
return content
def grading_agent(self, query, retrieved_content):
grading_prompt = f"""
Evaluate the relevance of the following retrieved content to the given query:
Query: {query}
Retrieved Content:
{retrieved_content}
Rate the relevance on a scale of 1-10 and explain your rating:
"""
input_ids = self.tokenizer.encode(grading_prompt, return_tensors="pt").to(self.model.device)
grading_response = self.generate_response_with_timeout(input_ids)
# Extract the numerical rating from the response
rating = int(re.search(r'\d+', grading_response).group())
return rating, grading_response
def query_rewrite_agent(self, original_query):
rewrite_prompt = f"""
The following query did not yield relevant results. Please rewrite it to potentially improve retrieval:
Original Query: {original_query}
Rewritten Query:
"""
input_ids = self.tokenizer.encode(rewrite_prompt, return_tensors="pt").to(self.model.device)
rewritten_query = self.generate_response_with_timeout(input_ids)
return rewritten_query.strip()
def generation_agent(self, query, retrieved_content):
conversation = [
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
{"role": "user", "content": f"""
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {retrieved_content}, choose the most suitable chunks for answering the query.
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
Here's my question:
Query: {query}
Solution==>
"""}
]
input_ids = self.tokenizer.encode(self.tokenizer.apply_chat_template(conversation, tokenize=False), return_tensors="pt").to(self.model.device)
return self.generate_response_with_timeout(input_ids)
def run_multi_agent_rag(self, query):
max_iterations = 3
for i in range(max_iterations):
# Retrieval step
retrieved_content = self.retrieval_agent(query)
# Grading step
relevance_score, grading_explanation = self.grading_agent(query, retrieved_content)
if relevance_score >= 7: # Assuming 7 out of 10 is the threshold for relevance
# Generation step
answer = self.generation_agent(query, retrieved_content)
return answer, retrieved_content, grading_explanation
else:
# Query rewrite step
query = self.query_rewrite_agent(query)
return "Unable to find a relevant answer after multiple attempts.", "", "Low relevance across all attempts."
def qa_infer_gradio(self, query):
answer, retrieved_content, grading_explanation = self.run_multi_agent_rag(query)
return answer, f"Retrieved Content:\n{retrieved_content}\n\nGrading Explanation:\n{grading_explanation}"
def launch_interface(doc_retrieval_gen):
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM Multi-Agent RAG"
)
interface.launch(debug=True)
if __name__ == "__main__":
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2'
multi_agent_rag = MultiAgentRAG(embedding_model_name, lm_model_id, data_folder)
launch_interface(multi_agent_rag) |