ignaciaginting commited on
Commit
d29af94
·
verified ·
1 Parent(s): 99d2104

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -30
app.py CHANGED
@@ -1,41 +1,32 @@
1
  import streamlit as st
 
2
  from huggingface_hub import snapshot_download
3
- from pdf2image import convert_from_bytes
4
- from PIL import Image
5
- import torch
6
  import os
 
 
 
7
 
8
- st.set_page_config(page_title="PDF Extract Kit QA", layout="centered")
9
-
10
- @st.cache_resource
11
- def load_model():
12
- model_dir = snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir="./pdf_model", max_workers=4)
13
- # TODO: Load model from model_dir using correct logic, e.g.:
14
- # model = torch.load(os.path.join(model_dir, "model.pt"))
15
- # return model
16
- return model_dir # TEMP placeholder
17
 
18
- model_or_dir = load_model()
19
 
20
- def extract_answer(image, question):
21
- # TODO: Implement the actual inference using the model
22
- # For now, we return a placeholder
23
- return "Answering is not implemented yet. Replace this with model inference."
24
 
25
- st.title("📄 PDF Extract Kit: Question Answering")
 
 
 
 
26
 
27
- uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
28
- question = st.text_input("Ask a question about the document")
29
 
30
- if uploaded_file and question:
31
- st.write("Reading and converting PDF...")
32
- images = convert_from_bytes(uploaded_file.read(), dpi=200)
33
 
34
- page_number = st.number_input("Select page", min_value=1, max_value=len(images), value=1, step=1)
35
- page_image = images[page_number - 1]
36
- st.image(page_image, caption=f"Page {page_number}")
37
 
38
- with st.spinner("Finding answer..."):
39
- answer = extract_answer(page_image, question)
40
- st.success("Answer:")
41
- st.write(answer)
 
1
  import streamlit as st
2
+ import fitz # PyMuPDF
3
  from huggingface_hub import snapshot_download
 
 
 
4
  import os
5
+ from pdf2image import convert_from_path
6
+ from PIL import Image
7
+ import tempfile
8
 
9
+ # Download the model if not already downloaded
10
+ model_dir = "./pdf-extract-kit"
11
+ if not os.path.exists(model_dir):
12
+ snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir=model_dir, max_workers=20)
 
 
 
 
 
13
 
14
+ st.title("PDF Table Extractor with PDF-Extract-Kit-1.0")
15
 
16
+ uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
 
 
 
17
 
18
+ if uploaded_file:
19
+ st.write("Converting PDF to images...")
20
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
21
+ tmp_pdf.write(uploaded_file.read())
22
+ tmp_pdf_path = tmp_pdf.name
23
 
24
+ images = convert_from_path(tmp_pdf_path)
 
25
 
26
+ for i, img in enumerate(images):
27
+ st.image(img, caption=f"Page {i+1}", use_column_width=True)
 
28
 
29
+ # Here you would call the table detection model on each image
30
+ st.info("🛠 Table detection model would run here... (to be implemented)")
 
31
 
32
+ st.success("Done processing PDF!")