Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,32 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from huggingface_hub import snapshot_download
|
3 |
-
from pdf2image import convert_from_bytes
|
4 |
-
from PIL import Image
|
5 |
-
import torch
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
model_dir = snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir="./pdf_model", max_workers=4)
|
13 |
-
# TODO: Load model from model_dir using correct logic, e.g.:
|
14 |
-
# model = torch.load(os.path.join(model_dir, "model.pt"))
|
15 |
-
# return model
|
16 |
-
return model_dir # TEMP placeholder
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
# TODO: Implement the actual inference using the model
|
22 |
-
# For now, we return a placeholder
|
23 |
-
return "Answering is not implemented yet. Replace this with model inference."
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
question = st.text_input("Ask a question about the document")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
images = convert_from_bytes(uploaded_file.read(), dpi=200)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
st.image(page_image, caption=f"Page {page_number}")
|
37 |
|
38 |
-
|
39 |
-
answer = extract_answer(page_image, question)
|
40 |
-
st.success("Answer:")
|
41 |
-
st.write(answer)
|
|
|
1 |
import streamlit as st
|
2 |
+
import fitz # PyMuPDF
|
3 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
from pdf2image import convert_from_path
|
6 |
+
from PIL import Image
|
7 |
+
import tempfile
|
8 |
|
9 |
+
# Download the model if not already downloaded
|
10 |
+
model_dir = "./pdf-extract-kit"
|
11 |
+
if not os.path.exists(model_dir):
|
12 |
+
snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir=model_dir, max_workers=20)
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
st.title("PDF Table Extractor with PDF-Extract-Kit-1.0")
|
15 |
|
16 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
|
|
|
|
|
|
17 |
|
18 |
+
if uploaded_file:
|
19 |
+
st.write("Converting PDF to images...")
|
20 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
|
21 |
+
tmp_pdf.write(uploaded_file.read())
|
22 |
+
tmp_pdf_path = tmp_pdf.name
|
23 |
|
24 |
+
images = convert_from_path(tmp_pdf_path)
|
|
|
25 |
|
26 |
+
for i, img in enumerate(images):
|
27 |
+
st.image(img, caption=f"Page {i+1}", use_column_width=True)
|
|
|
28 |
|
29 |
+
# Here you would call the table detection model on each image
|
30 |
+
st.info("🛠 Table detection model would run here... (to be implemented)")
|
|
|
31 |
|
32 |
+
st.success("Done processing PDF!")
|
|
|
|
|
|