Spaces:
Build error
Build error
app update
Browse files
app.py
CHANGED
@@ -1,27 +1,41 @@
|
|
1 |
-
import
|
2 |
-
from modelscope.pipelines import pipeline
|
3 |
-
from modelscope.utils.constant import Tasks
|
4 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
5 |
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
model=model_dir
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
2 |
from huggingface_hub import snapshot_download
|
3 |
+
from pdf2image import convert_from_bytes
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
import os
|
7 |
|
8 |
+
st.set_page_config(page_title="PDF Extract Kit QA", layout="centered")
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
model_dir = snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir="./pdf_model", max_workers=4)
|
13 |
+
# TODO: Load model from model_dir using correct logic, e.g.:
|
14 |
+
# model = torch.load(os.path.join(model_dir, "model.pt"))
|
15 |
+
# return model
|
16 |
+
return model_dir # TEMP placeholder
|
17 |
+
|
18 |
+
model_or_dir = load_model()
|
19 |
+
|
20 |
+
def extract_answer(image, question):
|
21 |
+
# TODO: Implement the actual inference using the model
|
22 |
+
# For now, we return a placeholder
|
23 |
+
return "Answering is not implemented yet. Replace this with model inference."
|
24 |
+
|
25 |
+
st.title("📄 PDF Extract Kit: Question Answering")
|
26 |
+
|
27 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
28 |
+
question = st.text_input("Ask a question about the document")
|
29 |
+
|
30 |
+
if uploaded_file and question:
|
31 |
+
st.write("Reading and converting PDF...")
|
32 |
+
images = convert_from_bytes(uploaded_file.read(), dpi=200)
|
33 |
+
|
34 |
+
page_number = st.number_input("Select page", min_value=1, max_value=len(images), value=1, step=1)
|
35 |
+
page_image = images[page_number - 1]
|
36 |
+
st.image(page_image, caption=f"Page {page_number}")
|
37 |
+
|
38 |
+
with st.spinner("Finding answer..."):
|
39 |
+
answer = extract_answer(page_image, question)
|
40 |
+
st.success("Answer:")
|
41 |
+
st.write(answer)
|