star-vector / app.py
ifire's picture
Add example space.
4d040cc
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
from starvector.data.util import process_and_rasterize_svg
# Load model and processor
model = AutoModelForCausalLM.from_pretrained(
"starvector/starvector-8b-im2svg",
trust_remote_code=True,
torch_dtype=torch.float16
).cuda()
processor = AutoProcessor.from_pretrained("starvector/starvector-8b-im2svg")
def generate_svg(input_data, input_type):
if input_type == "image":
# Process image input
image = processor(input_data, return_tensors="pt")['pixel_values'].cuda()
raw_svg = model.generate_im2svg({"image": image}, max_length=4000)[0]
else:
# Process text input
raw_svg = model.generate_text2svg(input_data, max_length=4000)[0]
svg_code, raster_image = process_and_rasterize_svg(raw_svg)
return svg_code, raster_image
with gr.Blocks() as demo:
gr.Markdown("# πŸ’« StarVector SVG Generator")
with gr.Tab("Image to SVG"):
gr.Markdown("Upload an image to convert to SVG")
with gr.Row():
image_input = gr.Image(type="pil", label="Input Image")
image_output = gr.Image(label="SVG Preview")
svg_code = gr.Code(label="Generated SVG Code")
image_button = gr.Button("Convert to SVG")
with gr.Tab("Text to SVG"):
gr.Markdown("Enter text to generate SVG")
with gr.Row():
text_input = gr.Textbox(label="Text Prompt")
text_output = gr.Image(label="SVG Preview")
text_svg_code = gr.Code(label="Generated SVG Code")
text_button = gr.Button("Generate SVG")
image_button.click(
fn=lambda x: generate_svg(x, "image"),
inputs=image_input,
outputs=[svg_code, image_output]
)
text_button.click(
fn=lambda x: generate_svg(x, "text"),
inputs=text_input,
outputs=[text_svg_code, text_output]
)
demo.launch()