File size: 4,817 Bytes
db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 a6bbecf db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from typing import *
import torch
import torch.nn as nn
from . import SparseTensor
__all__ = ["SparseDownsample", "SparseUpsample", "SparseSubdivide"]
class SparseDownsample(nn.Module):
"""
Downsample a sparse tensor by a factor of `factor`.
Implemented as average pooling.
"""
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
super(SparseDownsample, self).__init__()
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
assert DIM == len(
factor
), "Input coordinates must have the same dimension as the downsample factor."
coord = list(input.coords.unbind(dim=-1))
for i, f in enumerate(factor):
coord[i + 1] = coord[i + 1] // f
MAX = [coord[i + 1].max().item() + 1 for i in range(DIM)]
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
code = sum([c * o for c, o in zip(coord, OFFSET)])
code, idx = code.unique(return_inverse=True)
new_feats = torch.scatter_reduce(
torch.zeros(
code.shape[0],
input.feats.shape[1],
device=input.feats.device,
dtype=input.feats.dtype,
),
dim=0,
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
src=input.feats,
reduce="mean",
)
new_coords = torch.stack(
[code // OFFSET[0]]
+ [(code // OFFSET[i + 1]) % MAX[i] for i in range(DIM)],
dim=-1,
)
out = SparseTensor(
new_feats,
new_coords,
input.shape,
)
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
out._spatial_cache = input._spatial_cache
out.register_spatial_cache(f"upsample_{factor}_coords", input.coords)
out.register_spatial_cache(f"upsample_{factor}_layout", input.layout)
out.register_spatial_cache(f"upsample_{factor}_idx", idx)
return out
class SparseUpsample(nn.Module):
"""
Upsample a sparse tensor by a factor of `factor`.
Implemented as nearest neighbor interpolation.
"""
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
super(SparseUpsample, self).__init__()
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
assert DIM == len(
factor
), "Input coordinates must have the same dimension as the upsample factor."
new_coords = input.get_spatial_cache(f"upsample_{factor}_coords")
new_layout = input.get_spatial_cache(f"upsample_{factor}_layout")
idx = input.get_spatial_cache(f"upsample_{factor}_idx")
if any([x is None for x in [new_coords, new_layout, idx]]):
raise ValueError(
"Upsample cache not found. SparseUpsample must be paired with SparseDownsample."
)
new_feats = input.feats[idx]
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
out._spatial_cache = input._spatial_cache
return out
class SparseSubdivide(nn.Module):
"""
Upsample a sparse tensor by a factor of `factor`.
Implemented as nearest neighbor interpolation.
"""
def __init__(self):
super(SparseSubdivide, self).__init__()
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
# upsample scale=2^DIM
n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
n_coords = torch.nonzero(n_cube)
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
factor = n_coords.shape[0]
assert factor == 2**DIM
# print(n_coords.shape)
new_coords = input.coords.clone()
new_coords[:, 1:] *= 2
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(
new_coords.dtype
)
new_feats = input.feats.unsqueeze(1).expand(
input.feats.shape[0], factor, *input.feats.shape[1:]
)
out = SparseTensor(
new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape
)
out._scale = input._scale * 2
out._spatial_cache = input._spatial_cache
return out
|