File size: 4,817 Bytes
db6a3b7
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
 
 
a6bbecf
db6a3b7
a6bbecf
db6a3b7
 
 
 
 
a6bbecf
 
 
 
 
 
db6a3b7
 
 
a6bbecf
db6a3b7
 
a6bbecf
 
 
 
 
 
 
 
db6a3b7
 
 
 
a6bbecf
 
 
db6a3b7
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
 
 
 
 
a6bbecf
 
db6a3b7
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
db6a3b7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from typing import *
import torch
import torch.nn as nn
from . import SparseTensor

__all__ = ["SparseDownsample", "SparseUpsample", "SparseSubdivide"]


class SparseDownsample(nn.Module):
    """
    Downsample a sparse tensor by a factor of `factor`.
    Implemented as average pooling.
    """

    def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
        super(SparseDownsample, self).__init__()
        self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
        assert DIM == len(
            factor
        ), "Input coordinates must have the same dimension as the downsample factor."

        coord = list(input.coords.unbind(dim=-1))
        for i, f in enumerate(factor):
            coord[i + 1] = coord[i + 1] // f

        MAX = [coord[i + 1].max().item() + 1 for i in range(DIM)]
        OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
        code = sum([c * o for c, o in zip(coord, OFFSET)])
        code, idx = code.unique(return_inverse=True)

        new_feats = torch.scatter_reduce(
            torch.zeros(
                code.shape[0],
                input.feats.shape[1],
                device=input.feats.device,
                dtype=input.feats.dtype,
            ),
            dim=0,
            index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
            src=input.feats,
            reduce="mean",
        )
        new_coords = torch.stack(
            [code // OFFSET[0]]
            + [(code // OFFSET[i + 1]) % MAX[i] for i in range(DIM)],
            dim=-1,
        )
        out = SparseTensor(
            new_feats,
            new_coords,
            input.shape,
        )
        out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
        out._spatial_cache = input._spatial_cache

        out.register_spatial_cache(f"upsample_{factor}_coords", input.coords)
        out.register_spatial_cache(f"upsample_{factor}_layout", input.layout)
        out.register_spatial_cache(f"upsample_{factor}_idx", idx)

        return out


class SparseUpsample(nn.Module):
    """
    Upsample a sparse tensor by a factor of `factor`.
    Implemented as nearest neighbor interpolation.
    """

    def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
        super(SparseUpsample, self).__init__()
        self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
        assert DIM == len(
            factor
        ), "Input coordinates must have the same dimension as the upsample factor."

        new_coords = input.get_spatial_cache(f"upsample_{factor}_coords")
        new_layout = input.get_spatial_cache(f"upsample_{factor}_layout")
        idx = input.get_spatial_cache(f"upsample_{factor}_idx")
        if any([x is None for x in [new_coords, new_layout, idx]]):
            raise ValueError(
                "Upsample cache not found. SparseUpsample must be paired with SparseDownsample."
            )
        new_feats = input.feats[idx]
        out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
        out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
        out._spatial_cache = input._spatial_cache
        return out


class SparseSubdivide(nn.Module):
    """
    Upsample a sparse tensor by a factor of `factor`.
    Implemented as nearest neighbor interpolation.
    """

    def __init__(self):
        super(SparseSubdivide, self).__init__()

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        # upsample scale=2^DIM
        n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
        n_coords = torch.nonzero(n_cube)
        n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
        factor = n_coords.shape[0]
        assert factor == 2**DIM
        # print(n_coords.shape)
        new_coords = input.coords.clone()
        new_coords[:, 1:] *= 2
        new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(
            new_coords.dtype
        )

        new_feats = input.feats.unsqueeze(1).expand(
            input.feats.shape[0], factor, *input.feats.shape[1:]
        )
        out = SparseTensor(
            new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape
        )
        out._scale = input._scale * 2
        out._spatial_cache = input._spatial_cache
        return out