import gradio as gr import gc import cv2 import torch import torch.nn.functional as F from tqdm import tqdm from transformers import DistilBertTokenizer import matplotlib.pyplot as plt from implement import * # import config as CFG # from main import build_loaders # from CLIP import CLIPModel import os import zipfile # Define the filename zip_filename = 'Images.zip' import os import zipfile with gr.Blocks(css="style.css") as demo: # Define the filename zip_filename = 'Images.zip' # Check if the file exists if os.path.isfile(zip_filename): # Open the zip file with zipfile.ZipFile(zip_filename, 'r') as zip_ref: # Extract all contents of the zip file to the current directory zip_ref.extractall() print(f"'{zip_filename}' has been successfully unzipped.") else: print(f"'{zip_filename}' not found in the current directory.") # Create Gradio interface demo.launch(share=True)