File size: 8,954 Bytes
4d5de4a
 
 
 
e682c91
4d5de4a
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
e682c91
4d5de4a
901460b
 
 
4d5de4a
 
 
 
e682c91
4d5de4a
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901460b
4d5de4a
 
901460b
4d5de4a
 
901460b
4d5de4a
 
 
901460b
4d5de4a
901460b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d5de4a
 
 
901460b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import io
import base64
import streamlit as st
import os
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import json
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import time

# Set page configuration
st.set_page_config(
    page_title="TeleGuide | AI Telecom Assistant",
    page_icon="πŸ›°οΈ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Function to load Lottie animations
def load_lottie(url: str):
    try:
        r = requests.get(url)
        if r.status_code != 200:
            return None
        return r.json()
    except:
        return None

# Apply custom CSS for styling and animations
st.markdown("""
<style>
    .stApp {
        background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    }
    .css-1r6slb0 {
        background: white;
        border-radius: 20px;
        padding: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .main-header {
        font-size: 2.5rem;
        font-weight: 700;
        color: #1E3D59;
        text-align: center;
        margin-bottom: 2rem;
        animation: fadeIn 1.5s ease-in;
    }
    .stButton>button {
        width: 100%;
        border-radius: 10px;
        background: linear-gradient(45deg, #2193b0, #6dd5ed);
        color: white;
        border: none;
        padding: 0.5rem 1rem;
        transition: all 0.3s ease;
    }
    .stButton>button:hover {
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
    }
    .stTextInput>div>div>input,
    .stTextArea>div>div>textarea {
        border-radius: 10px;
        border: 2px solid #e0e0e0;
        padding: 10px;
        background-color: white;
    }
    .css-1d391kg {
        background: linear-gradient(180deg, #1E3D59 0%, #2193b0 100%);
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(20px); }
        to { opacity: 1; transform: translateY(0); }
    }
    .fade-in {
        animation: fadeIn 1s ease-in;
    }
    .success-message {
        padding: 1rem;
        border-radius: 10px;
        background-color: #d4edda;
        color: #155724;
        margin: 1rem 0;
    }
    .error-message {
        padding: 1rem;
        border-radius: 10px;
        background-color: #f8d7da;
        color: #721c24;
        margin: 1rem 0;
    }
</style>
""", unsafe_allow_html=True)

# Initialize OpenAI client with Hugging Face secrets for API key
@st.cache_resource
def get_openai_client():
    try:
        # Fetch the API key from Hugging Face secrets
        api_key = st.secrets["api_key"]
        return OpenAI(api_key=api_key, base_url="https://api.together.xyz")
    except Exception as e:
        st.error(f"Error initializing API client: {str(e)}")
        return None

client = get_openai_client()

# Load animations
lottie_telecom = load_lottie("https://assets4.lottiefiles.com/packages/lf20_qz3tpn4w.json")
lottie_analysis = load_lottie("https://assets4.lottiefiles.com/packages/lf20_xh83pj1k.json")

# Process text query function
def process_text_query(query, model="meta-llama/Llama-3.2-3B-Instruct-Turbo"):
    try:
        with st.spinner("Processing your query..."):
            response = client.chat.completions.create(
                model=model,
                messages=[
                    {"role": "system", "content": "You are TeleGuide, an expert AI assistant specialized in telecommunication tasks. Provide detailed, practical, and accurate information."},
                    {"role": "user", "content": query}
                ],
                max_tokens=500,
                temperature=0.7
            )
            return response.choices[0].message.content
    except Exception as e:
        st.error(f"Error processing query: {str(e)}")
        return None

# Process image query function
def process_image_query(image_base64, query, model="meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo"):
    try:
        with st.spinner("Analyzing image..."):
            system_message = "You are TeleGuide, an expert AI assistant in telecommunications infrastructure analysis."
            response = client.chat.completions.create(
                model=model,
                messages=[
                    {"role": "system", "content": system_message},
                    {
                        "role": "user",
                        "content": [
                            {"type": "text", "text": query},
                            {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
                        ]
                    }
                ],
                max_tokens=500,
                temperature=0.7
            )
            return response.choices[0].message.content
    except Exception as e:
        st.error(f"Error analyzing image: {str(e)}")
        return None

# Convert image to base64
def image_to_base64(image):
    try:
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')
    except Exception as e:
        st.error(f"Error converting image: {str(e)}")
        return None

# Sidebar content
with st.sidebar:
    st.title("πŸ›°οΈ TeleGuide")
    st_lottie(lottie_telecom, height=200)
    st.markdown("---")
    st.info("Your AI-powered telecommunication assistant, providing expert analysis and insights.")
    st.markdown("### Features")
    st.markdown("""
    - πŸ“ Text Analysis
    - πŸ“„ Document Processing
    - πŸ–ΌοΈ Image Analysis
    - πŸ“‘ Infrastructure Planning
    """)
    st.markdown("---")
    st.markdown("#### Powered by Advanced AI")
    st.caption("Using Llama 3.2 Models")

# Main content
st.markdown('<h1 class="main-header">Welcome to TeleGuide</h1>', unsafe_allow_html=True)

# Navigation menu
selected = option_menu(
    menu_title=None,
    options=["Text Analysis", "Document Processing", "Image Analysis"],
    icons=["chat-dots", "file-text", "image"],
    menu_icon="cast",
    default_index=0,
    orientation="horizontal",
    styles={
        "container": {"padding": "0!important", "background-color": "transparent"},
        "icon": {"color": "#1E3D59", "font-size": "25px"},
        "nav-link": {
            "font-size": "20px",
            "text-align": "center",
            "margin": "0px",
            "--hover-color": "#eee",
        },
        "nav-link-selected": {"background-color": "#2193b0", "color": "white"},
    }
)

# Handle different options from the navigation menu
if selected == "Text Analysis":
    st.markdown("### πŸ’¬ Text Analysis")
    st_lottie(lottie_analysis, height=200)
    
    query = st.text_area("Enter your telecommunications query:", height=100)
    if st.button("Process Query", key="text_query"):
        if query:
            response = process_text_query(query)
            if response:
                st.markdown('<div class="success-message">βœ… Query processed successfully!</div>', unsafe_allow_html=True)
                st.markdown("### Response:")
                st.write(response)
        else:
            st.warning("Please enter a query.")

elif selected == "Document Processing":
    st.markdown("### πŸ“„ Document Analysis")
    document_type = st.selectbox(
        "Select Document Type",
        ["Regulatory Document", "Technical Specification", "Network Planning", "Customer Inquiry"]
    )
    
    text_input = st.text_area("Enter document text:", height=150)
    if st.button("Analyze Document"):
        if text_input:
            response = process_text_query(f"Analyze the following {document_type}: {text_input}")
            if response:
                st.markdown('<div class="success-message">βœ… Document analyzed successfully!</div>', unsafe_allow_html=True)
                st.markdown("### Response:")
                st.write(response)
        else:
            st.warning("Please enter some text to analyze.")

elif selected == "Image Analysis":
    st.markdown("### πŸ–ΌοΈ Image Analysis")
    image_file = st.file_uploader("Upload an image for analysis", type=["jpg", "jpeg", "png"])
    
    if image_file:
        image = Image.open(image_file)
        st.image(image, caption="Uploaded Image", use_column_width=True)
        
        query = st.text_input("Enter your query about this image:")
        
        if st.button("Analyze Image"):
            image_base64 = image_to_base64(image)
            if image_base64 and query:
                response = process_image_query(image_base64, query)
                if response:
                    st.markdown('<div class="success-message">βœ… Image analyzed successfully!</div>', unsafe_allow_html=True)
                    st.markdown("### Response:")
                    st.write(response)
            else:
                st.warning("Please upload an image and enter a query.")

# Footer
st.markdown("---")
st.caption("πŸš€ Powered by OpenAI | Streamlit | Llama Models")