import cv2 import numpy as np import pandas as pd import gradio as gr import matplotlib.pyplot as plt from datetime import datetime def preprocess_image(image): """Convert image to HSV and apply adaptive thresholding for better detection.""" if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Adaptive thresholding for better contrast adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) # Morphological operations to remove noise kernel = np.ones((3,3), np.uint8) clean_mask = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel, iterations=2) clean_mask = cv2.morphologyEx(clean_mask, cv2.MORPH_OPEN, kernel, iterations=2) return clean_mask def detect_blood_cells(image): """Detect blood cells using contour analysis with refined filtering.""" mask = preprocess_image(image) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) features = [] for i, contour in enumerate(contours, 1): area = cv2.contourArea(contour) perimeter = cv2.arcLength(contour, True) circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0 if 100 < area < 5000 and circularity > 0.7: M = cv2.moments(contour) if M["m00"] != 0: cx = int(M["m10"] / M["m00"]) cy = int(M["m01"] / M["m00"]) features.append({'label': i, 'area': area, 'perimeter': perimeter, 'circularity': circularity, 'centroid_x': cx, 'centroid_y': cy}) return contours, features, mask def process_image(image): if image is None: return None, None, None, None contours, features, mask = detect_blood_cells(image) vis_img = image.copy() for feature in features: contour = contours[feature['label'] - 1] cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2) cv2.putText(vis_img, str(feature['label']), (feature['centroid_x'], feature['centroid_y']), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) df = pd.DataFrame(features) return vis_img, mask, df def analyze(image): vis_img, mask, df = process_image(image) plt.style.use('dark_background') fig, axes = plt.subplots(1, 2, figsize=(12, 5)) if not df.empty: axes[0].hist(df['area'], bins=20, color='cyan', edgecolor='black') axes[0].set_title('Cell Size Distribution') axes[1].scatter(df['area'], df['circularity'], alpha=0.6, c='magenta') axes[1].set_title('Area vs Circularity') return vis_img, mask, fig, df # Gradio Interface demo = gr.Interface(fn=analyze, inputs=gr.Image(type="numpy"), outputs=[gr.Image(), gr.Image(), gr.Plot(), gr.Dataframe()]) demo.launch()