File size: 10,767 Bytes
a099612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""Template Demo for IBM Granite Hugging Face spaces."""

from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread

import gradio as gr
import PIL
import spaces
import torch
from PIL.Image import Image as PILImage
from PIL.Image import Resampling
from transformers import (
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
    AutoTokenizer,
    LlavaNextForConditionalGeneration,
    LlavaNextProcessor,
    TextIteratorStreamer,
)

from themes.research_monochrome import theme

dir_ = Path(__file__).parent.parent
today_date = datetime.today().strftime("%B %-d, %Y")  # noqa: DTZ002

MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
MODEL_ID_PREVIEW = "ibm-granite/granite-vision-3.1-2b-preview"
# SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.
# Today's Date: {today_date}.
# You are Granite, developed by IBM. You are a helpful AI assistant"""
TITLE = "IBM Granite VISION 3.1 2b preview"

DESCRIPTION = "Try one of the sample prompts below or write your own. Remember, \
               AI models can make mistakes."
MAX_INPUT_TOKEN_LENGTH = 4096
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05

sample_data = [
    [
        "https://www.ibm.com/design/language/static/159e89b3d8d6efcb5db43f543df36b23/a5df1/rebusgallery_tshirt.png",
        ["What are the three symbols on the tshirt?"],
    ],
    [
        str(dir_ / "data" / "p2-report.png"),
        [
            "What's the difference in rental income between 2020 and 2019?",
            "Which table entries are less in 2020 than 2019?",
        ],
    ],
    [
        "https://www.ibm.com/design/language/static/159e89b3d8d6efcb5db43f543df36b23/a5df1/rebusgallery_tshirt.png",
        ["What's this?"],
    ],
]

device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")

processor: LlavaNextProcessor = None
model: LlavaNextForConditionalGeneration = None

selected_image: PILImage = None


def image_changed(im: PILImage):
    global selected_image
    if im is None:
        selected_image = None
    else:
        selected_image = im.copy()
        selected_image.thumbnail((800, 800))
        # return selected_image


def create_single_turn(image: PILImage, text: str) -> dict:
    if image is None:
        return {
            "role": "user",
            "content": [
                {"type": "text", "text": text},
            ],
        }
    else:
        return {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": text},
            ],
        }


@spaces.GPU
def generate(
    image: PILImage,
    message: str,
    chat_history: list[dict],
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
):
    """Generate function for chat demo.

    Args:
        max_new_tokens:
        top_k:
        top_p:
        repetition_penalty:
        temperature:
        image: the image to be talked about...
        message (str): The latest input message from the user.
        chat_history (list[dict]): A list of dictionaries representing previous chat history, where each dictionary
                                   contains 'role' and 'content'.

    Yields:
        str: The generated response, broken down into smaller chunks.
    """

    print(top_p)
    # Build messages
    conversation = []
    #  TODO: maybe add back custom sys prompt
    # conversation.append({"role": "system", "content": SYS_PROMPT})
    conversation += chat_history
    conversation.append(create_single_turn(image, message))

    # Convert messages to prompt format
    inputs = processor.apply_chat_template(
        conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
    ).to(device)

    # TODO: This might cut out the image tokens -- find better strategy
    # if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
    #     input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
    #     gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")

    generate_kwargs = dict(
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    output = model.generate(**inputs, **generate_kwargs)
    out = processor.decode(output[0], skip_special_tokens=True)
    out_s = out.strip().split("<|assistant|>")
    return [gr.ChatMessage(role="user", content=message), gr.ChatMessage(role="assistant", content=out_s[-1])]


def multimodal_generate_v2(
    msg: str,
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
):
    global model, processor

    # lazy loading and adding image
    if model is None:
        processor = AutoProcessor.from_pretrained(MODEL_ID)
        model = AutoModelForVision2Seq.from_pretrained(MODEL_ID, device_map="auto").to(device)

    return generate(
        selected_image,
        msg,
        [],
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        top_p=top_p,
        top_k=top_k,
        max_new_tokens=max_new_tokens,
    )


tb = gr.Textbox(submit_btn=True)
# advanced settings (displayed in Accordion)
temperature_slider = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=TEMPERATURE,
    step=0.1,
    label="Temperature",
    elem_classes=["gr_accordion_element"],
    interactive=True,
)
top_p_slider = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=TOP_P,
    step=0.05,
    label="Top P",
    elem_classes=["gr_accordion_element"],
    interactive=True,
)
top_k_slider = gr.Slider(
    minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"], interactive=True
)
repetition_penalty_slider = gr.Slider(
    minimum=0,
    maximum=2.0,
    value=REPETITION_PENALTY,
    step=0.05,
    label="Repetition Penalty",
    elem_classes=["gr_accordion_element"],
    interactive=True,
)
max_new_tokens_slider = gr.Slider(
    minimum=1,
    maximum=2000,
    value=MAX_NEW_TOKENS,
    step=1,
    label="Max New Tokens",
    elem_classes=["gr_accordion_element"],
    interactive=True,
)

chatbot = gr.Chatbot(examples=[{"text": "Hello World!"}], type="messages", label="Q&A about selected document")

css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    is_in_edit_mode = gr.State(True)  # in block to be reactive

    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            # create sample image object for reference, render later
            image_x = gr.Image(
                type="pil",
                label="Example image",
                render=False,
                interactive=False,
                show_label=False,
                show_fullscreen_button=False,
                height=800,
            )
            image_x.change(fn=image_changed, inputs=image_x)

            # Create Dataset object and render it
            ds = gr.Dataset(label="Select one document", samples=sample_data, components=[gr.Image(render=False)])

            def sample_image_selected(d: gr.SelectData, dx):
                return gr.Image(dx[0]), gr.update(examples=[{"text": x} for x in dx[1]])

            ds.select(lambda: [], outputs=[chatbot])
            ds.select(sample_image_selected, inputs=[ds], outputs=[image_x, chatbot])

            # Render image object after DS
            image_x.render()
        with gr.Column():
            # Render ChatBot
            chatbot.render()

            # Define behavior for example selection
            def update_user_chat_x(x: gr.SelectData):
                return [gr.ChatMessage(role="user", content=x.value["text"])]

            def send_generate_x(x: gr.SelectData, temperature, repetition_penalty, top_p, top_k, max_new_tokens):
                txt = x.value["text"]
                return multimodal_generate_v2(txt, temperature, repetition_penalty, top_p, top_k, max_new_tokens)

            chatbot.example_select(lambda: False, outputs=is_in_edit_mode)
            chatbot.example_select(update_user_chat_x, outputs=[chatbot])
            chatbot.example_select(
                send_generate_x,
                inputs=[
                    temperature_slider,
                    repetition_penalty_slider,
                    top_p_slider,
                    top_k_slider,
                    max_new_tokens_slider,
                ],
                outputs=[chatbot],
            )

            # Create User Chat Textbox and Reset Button
            tbb = gr.Textbox(submit_btn=True, show_label=False)
            fb = gr.Button("Reset Chat", visible=False)
            fb.click(lambda: [], outputs=[chatbot])

            # Handle toggling betwwen edit and non-edit mode
            def textbox_switch(emode):
                # if t.visible:
                if not emode:
                    return [gr.update(visible=False), gr.update(visible=True)]
                else:
                    return [gr.update(visible=True), gr.update(visible=False)]

            tbb.submit(lambda: False, outputs=[is_in_edit_mode])
            fb.click(lambda: True, outputs=[is_in_edit_mode])
            is_in_edit_mode.change(textbox_switch, inputs=[is_in_edit_mode], outputs=[tbb, fb])

            # submit user question
            tbb.submit(lambda x: [gr.ChatMessage(role="user", content=x)], inputs=tbb, outputs=chatbot)
            tbb.submit(
                multimodal_generate_v2,
                inputs=[
                    tbb,
                    temperature_slider,
                    repetition_penalty_slider,
                    top_p_slider,
                    top_k_slider,
                    max_new_tokens_slider,
                ],
                outputs=[chatbot],
            )

            # extra model parameters
            with gr.Accordion("Advanced Settings", open=False):
                max_new_tokens_slider.render()
                temperature_slider.render()
                top_k_slider.render()
                top_p_slider.render()
                repetition_penalty_slider.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()