Spaces:
Running
Running
File size: 11,215 Bytes
77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import json
import logging
import re
import huggingface_hub
from huggingface_hub import HfApi, ModelCard, hf_hub_download
from huggingface_hub.hf_api import (
ModelInfo,
get_safetensors_metadata,
parse_safetensors_file_metadata,
)
from transformers import AutoConfig, AutoTokenizer
from src.submit import ModelSizeChecker
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return (
False,
"Please add a model card to your model to explain how you trained/fine-tuned it.",
None,
)
# Enforce license metadata
if card.data.license is None and not (
"license_name" in card.data and "license_link" in card.data
):
return (
False,
(
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
),
None,
)
# Enforce card content
if len(card.text) < 200:
return (
False,
"Please add a description to your model card, it is too short.",
None,
)
return True, "", card
def is_model_on_hub(
model_name: str,
revision: str,
token: str | None = None,
trust_remote_code: bool = False,
test_tokenizer: bool = False,
) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token,
force_download=True,
)
if test_tokenizer:
try:
_ = AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token,
)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None,
)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None,
)
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return (
False,
f"was not found or misconfigured on the hub! Error raised was {e.args[0]}",
None,
)
def get_model_size(
model_info: ModelInfo, precision: str, base_model: str | None
) -> tuple[float | None, str]:
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
adapter_safetensors = None
# hack way to check that model is adapter
is_adapter = "adapter_config.json" in (
s.rfilename for s in model_info.siblings
)
try:
if is_adapter:
if not base_model:
return (
None,
"Adapter model submission detected. Please ensure the base model information is provided.",
)
adapter_safetensors = parse_safetensors_file_metadata(
model_info.id, "adapter_model.safetensors"
)
safetensors = get_safetensors_metadata(base_model)
else:
safetensors = get_safetensors_metadata(model_info.id)
except Exception as e:
logging.warning(
f"Failed to get safetensors metadata for model {model_info.id}: {e!s}"
)
if safetensors is not None:
model_size = sum(safetensors.parameter_count.values())
if adapter_safetensors is not None:
model_size += sum(safetensors.parameter_count.values())
model_size = round(model_size / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
if size_match:
model_size = size_match.group(0)
model_size = round(
float(model_size[:-1])
if model_size[-1] == "b"
else float(model_size[:-1]) / 1e3,
3,
)
else:
return None, "Unknown model size"
except AttributeError:
logging.warning(
f"Unable to parse model size from ID: {model_info.id}"
)
return None, "Unknown model size"
size_factor = (
8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
)
model_size = size_factor * model_size
return model_size, ""
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def check_chat_template(model: str, revision: str) -> tuple[bool, str]:
try:
# Attempt to download only the tokenizer_config.json file
config_file = hf_hub_download(
repo_id=model,
filename="tokenizer_config.json",
revision=revision,
repo_type="model",
)
# Read and parse the tokenizer_config.json file
with open(config_file, "r") as f:
tokenizer_config = json.load(f)
# Check if chat_template exists in the tokenizer configuration
if "chat_template" not in tokenizer_config:
return (
False,
f"The model {model} doesn't have a chat_template in its tokenizer_config.json. Please add a chat_template before submitting or submit without it.",
)
return True, ""
except Exception as e:
return (
False,
f"Error checking chat_template for model {model}: {str(e)}",
)
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
tags = []
if model_card is None:
return tags
if model_card.data.tags:
is_merge_from_metadata = any(
[
tag in model_card.data.tags
for tag in ["merge", "moerge", "mergekit", "lazymergekit"]
]
)
is_moe_from_metadata = any(
[tag in model_card.data.tags for tag in ["moe", "moerge"]]
)
is_merge_from_model_card = any(
keyword in model_card.text.lower()
for keyword in ["merged model", "merge model", "moerge"]
)
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
is_moe_from_model_card = any(
keyword in model_card.text.lower() for keyword in ["moe", "mixtral"]
)
# Hardcoding because of gating problem
if "Qwen/Qwen1.5-32B" in model:
is_moe_from_model_card = False
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace(
"_", "-"
).split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
return tags
def validate_model(
model, precision, base_model, weight_type, use_chat_template
):
"""
Validate model with some checkers to assure tha can be evaluated
:param model: hf model name
:param precision: model parameters data type
:param base_model: base model (if it is need it)
:param weight_type:
:param use_chat_template:
:return:
"""
API = HfApi()
try:
model_info = API.model_info(repo_id=model, revision="main")
except:
return (
"Could not get your model information. Please fill it up properly."
)
# Check model size early
model_size, error_text = get_model_size(
model_info=model_info, precision=precision, base_model=base_model
)
if model_size is None:
return error_text
# Absolute size limit for float16 and bfloat16
if precision in ["float16", "bfloat16"] and model_size > 100:
error_message = (
f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. "
f"Your model size: {model_size:.2f}B parameters."
)
return error_message
# Precision-adjusted size limit for 8bit, 4bit, and GPTQ
if precision in ["8bit", "4bit", "GPTQ"]:
size_checker = ModelSizeChecker(
model=model, precision=precision, model_size_in_b=model_size
)
if not size_checker.can_evaluate():
precision_factor = size_checker.get_precision_factor()
max_size = 140 * precision_factor
error_message = (
f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically "
f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters."
)
return error_message
architecture = "?"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model,
revision="main",
token=None,
test_tokenizer=True,
)
if not base_model_on_hub:
return f'Base model "{base_model}" {error}'
if not weight_type == "Adapter":
model_on_hub, error, model_config = is_model_on_hub(
model_name=model, revision=model_info.sha, test_tokenizer=True
)
if not model_on_hub or model_config is None:
return f'Model "{model}" {error}'
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Were the model card and license filled?
try:
_ = model_info.cardData["license"]
except Exception:
return "Please select a license for your model"
modelcard_OK, error_msg, model_card = check_model_card(model)
if not modelcard_OK:
return error_msg
# Check the chat template submission
if use_chat_template:
chat_template_valid, chat_template_error = check_chat_template(
model, "main"
)
if not chat_template_valid:
return chat_template_error
return None
|