Spaces:
Build error
Build error
File size: 6,230 Bytes
8e34f80 e981e7f 8e34f80 74fc255 8e34f80 0bb8ce2 8e34f80 f51ad44 15b96ac 080099f 15b96ac bd55da6 f51ad44 74fc255 8e34f80 e981e7f 15b96ac e981e7f bbf9e08 15b96ac 74fc255 080099f 8e34f80 ee4f4a6 bbf9e08 ee4f4a6 e17785f 15b96ac ee4f4a6 4c0fb4c 74fc255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import torch
from PIL import Image
import pandas as pd
from lavis.models import load_model_and_preprocess
from lavis.processors import load_processor
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
import tensorflow as tf
import tensorflow_hub as hub
import io
from sklearn.metrics.pairwise import cosine_similarity
import tempfile
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Load model and preprocessors for Image-Text Matching (LAVIS)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
# Load tokenizer and model for Image Captioning (TextCaps)
git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
# Load Universal Sentence Encoder model for textual similarity calculation
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
# Define a function to compute textual similarity between caption and statement
def compute_textual_similarity(caption, statement):
# Convert caption and statement into sentence embeddings
caption_embedding = embed([caption])[0].numpy()
statement_embedding = embed([statement])[0].numpy()
# Calculate cosine similarity between sentence embeddings
similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
return similarity_score
# Read statements from the external file 'statements.txt'
with open('statements.txt', 'r') as file:
statements = file.read().splitlines()
# Function to compute ITM scores for the image-statement pair
def compute_itm_score(image, statement):
logging.info('Starting compute_itm_score')
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
# Pass the statement text directly to model_itm
itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
score = itm_scores[:, 1].item()
logging.info('Finished compute_itm_score')
return score
def generate_caption(processor, model, image):
logging.info('Starting generate_caption')
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
logging.info('Finished generate_caption')
return generated_caption
def save_dataframe_to_csv(df):
csv_buffer = io.StringIO()
df.to_csv(csv_buffer, index=False)
csv_string = csv_buffer.getvalue()
# Save the CSV string to a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file:
temp_file.write(csv_string)
temp_file_path = temp_file.name # Get the file path
# Return the file path (no need to reopen the file with "rb" mode)
return temp_file_path
# Main function to perform image captioning and image-text matching for multiple images
def process_images_and_statements(files):
# Initialize an empty list to store the results for all images
all_results_list = []
# Loop through each uploaded file (image)
for file_name, image in files.items():
# Generate image caption for the uploaded image using git-large-r-textcaps
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
# Loop through each predefined statement
for statement in statements:
# Compute textual similarity between caption and statement
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
# Compute ITM score for the image-statement pair
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
weight_textual_similarity = 0.5
weight_statement = 0.5
# Combine the two scores using a weighted average
final_score = ((weight_textual_similarity * textual_similarity_score) +
(weight_statement * itm_score_statement))
# Append the result to the all_results_list
all_results_list.append({
'Image File Name': file_name, # Include the image file name
'Statement': statement,
'Generated Caption': caption,
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
})
# Convert the all_results_list to a DataFrame using pandas.concat
results_df = pd.concat([pd.DataFrame([result]) for result in all_results_list], ignore_index=True)
# Save results_df to a CSV file
csv_results = save_dataframe_to_csv(results_df)
# Return both the DataFrame and the CSV data for the Gradio interface
return results_df, csv_results
# Gradio interface with File input to receive multiple images and file names
image_input = gr.inputs.File(file_count="multiple", type="file", label="Upload Images")
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
output_csv = gr.outputs.File(label="Download CSV")
iface = gr.Interface(
fn=process_images_and_statements,
inputs=image_input,
outputs=[output_df, output_csv],
title="Image Captioning and Image-Text Matching",
theme='sudeepshouche/minimalist',
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
)
iface.launch()
|