import gradio as gr from transformers import AutoProcessor, Blip2ForConditionalGeneration import torch from PIL import Image # Check for GPU availability and set the device variable accordingly device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the BLIP-2 model and processor processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") # Load model with additional parameters if GPU is available, else load without additional parameters if torch.cuda.is_available(): device_map = {0: 'cpu', 1: 'cpu'} # Define a custom device map if needed model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map=device_map, load_in_8bit_fp32_cpu_offload=True ) else: model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") def blip2_interface(image, prompted_caption_text, vqa_question, chat_context): # Prepare image input image_input = Image.fromarray(image).convert('RGB') inputs = processor(image_input, return_tensors="pt").to(device) # Remove torch.float16 dtype conversion # Image Captioning generated_ids = model.generate(**inputs, max_new_tokens=20) image_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() # Prompted Image Captioning inputs = processor(image_input, text=prompted_caption_text, return_tensors="pt").to(device) generated_ids = model.generate(**inputs, max_new_tokens=20) prompted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() # Visual Question Answering (VQA) prompt = f"Question: {vqa_question} Answer:" inputs = processor(image_input, text=prompt, return_tensors="pt").to(device) generated_ids = model.generate(**inputs, max_new_tokens=10) vqa_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() # Chat-based Prompting prompt = chat_context + " Answer:" inputs = processor(image_input, text=prompt, return_tensors="pt").to(device) generated_ids = model.generate(**inputs, max_new_tokens=10) chat_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return image_caption, prompted_caption, vqa_answer, chat_response # Define Gradio input components image_input = gr.inputs.Image(type="numpy", label="Image Input") prompted_caption_input = gr.inputs.Textbox(label="Prompted Caption Text") vqa_question_input = gr.inputs.Textbox(label="VQA Question") chat_context = gr.inputs.Textbox(label="Chat Context") # Define Gradio output components with labels corresponding to the inputs image_caption_result = gr.outputs.Textbox(label="Image Caption") prompted_caption_result = gr.outputs.Textbox(label="Prompted Image Caption") vqa_answer = gr.outputs.Textbox(label="VQA Answer") chat_response = gr.outputs.Textbox(label="Chat Response") # Create Gradio interface iface = gr.Interface( fn=blip2_interface, inputs=[image_input, prompted_caption_input, vqa_question_input, chat_context], outputs=[image_caption_result, prompted_caption_result, vqa_answer, chat_response], title="BLIP-2 Image Captioning and VQA", description="Interact with the BLIP-2 model for image captioning, prompted image captioning, visual question answering, and chat-based prompting.", ) if __name__ == "__main__": iface.launch()