iamrobotbear commited on
Commit
f260439
·
1 Parent(s): cadcb55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -33,19 +33,19 @@ def blip2_interface(image, prompted_caption_text, vqa_question, chat_context):
33
  image_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
34
 
35
  # Prompted Image Captioning
36
- inputs = processor(image_input, text=prompted_caption_text, return_tensors="pt").to(device, torch.float16)
37
  generated_ids = model.generate(**inputs, max_new_tokens=20)
38
  prompted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
39
 
40
  # Visual Question Answering (VQA)
41
  prompt = f"Question: {vqa_question} Answer:"
42
- inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16)
43
  generated_ids = model.generate(**inputs, max_new_tokens=10)
44
  vqa_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
45
 
46
  # Chat-based Prompting
47
  prompt = chat_context + " Answer:"
48
- inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16)
49
  generated_ids = model.generate(**inputs, max_new_tokens=10)
50
  chat_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
51
 
 
33
  image_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
34
 
35
  # Prompted Image Captioning
36
+ inputs = processor(image_input, text=prompted_caption_text, return_tensors="pt").to(device)
37
  generated_ids = model.generate(**inputs, max_new_tokens=20)
38
  prompted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
39
 
40
  # Visual Question Answering (VQA)
41
  prompt = f"Question: {vqa_question} Answer:"
42
+ inputs = processor(image_input, text=prompt, return_tensors="pt").to(device)
43
  generated_ids = model.generate(**inputs, max_new_tokens=10)
44
  vqa_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
45
 
46
  # Chat-based Prompting
47
  prompt = chat_context + " Answer:"
48
+ inputs = processor(image_input, text=prompt, return_tensors="pt").to(device)
49
  generated_ids = model.generate(**inputs, max_new_tokens=10)
50
  chat_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
51