Commit
·
6ded388
1
Parent(s):
235b83d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the BLIP-2 model and processor
|
7 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
8 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
9 |
+
"Salesforce/blip2-opt-2.7b", device_map="auto", load_in_8bit=True
|
10 |
+
)
|
11 |
+
|
12 |
+
# Set device to GPU if available
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
def blip2_interface(image, prompted_caption_text, vqa_question, chat_context):
|
16 |
+
# Prepare image input
|
17 |
+
image_input = Image.fromarray(image).convert('RGB')
|
18 |
+
inputs = processor(image_input, return_tensors="pt").to(device, torch.float16)
|
19 |
+
|
20 |
+
# Image Captioning
|
21 |
+
generated_ids = model.generate(**inputs, max_new_tokens=20)
|
22 |
+
image_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
23 |
+
|
24 |
+
# Prompted Image Captioning
|
25 |
+
inputs = processor(image_input, text=prompted_caption_text, return_tensors="pt").to(device, torch.float16)
|
26 |
+
generated_ids = model.generate(**inputs, max_new_tokens=20)
|
27 |
+
prompted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
28 |
+
|
29 |
+
# Visual Question Answering (VQA)
|
30 |
+
prompt = f"Question: {vqa_question} Answer:"
|
31 |
+
inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16)
|
32 |
+
generated_ids = model.generate(**inputs, max_new_tokens=10)
|
33 |
+
vqa_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
34 |
+
|
35 |
+
# Chat-based Prompting
|
36 |
+
prompt = chat_context + " Answer:"
|
37 |
+
inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16)
|
38 |
+
generated_ids = model.generate(**inputs, max_new_tokens=10)
|
39 |
+
chat_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
40 |
+
|
41 |
+
return image_caption, prompted_caption, vqa_answer, chat_response
|
42 |
+
|
43 |
+
# Define Gradio input and output components
|
44 |
+
image_input = gr.inputs.Image(type="numpy")
|
45 |
+
text_input = gr.inputs.Text()
|
46 |
+
output_text = gr.outputs.Text()
|
47 |
+
|
48 |
+
# Create Gradio interface
|
49 |
+
iface = gr.Interface(
|
50 |
+
|