|
import gradio as gr |
|
from transformers import AutoProcessor, Blip2ForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") |
|
|
|
model = Blip2ForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map='auto' |
|
) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def blip2_interface(image, prompted_caption_text, vqa_question, chat_context): |
|
|
|
image_input = Image.fromarray(image).convert('RGB') |
|
inputs = processor(image_input, return_tensors="pt").to(device, torch.float16) |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=20) |
|
image_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
|
|
inputs = processor(image_input, text=prompted_caption_text, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate(**inputs, max_new_tokens=20) |
|
prompted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
|
|
prompt = f"Question: {vqa_question} Answer:" |
|
inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate(**inputs, max_new_tokens=10) |
|
vqa_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
|
|
prompt = chat_context + " Answer:" |
|
inputs = processor(image_input, text=prompt, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate(**inputs, max_new_tokens=10) |
|
chat_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
return image_caption, prompted_caption, vqa_answer, chat_response |
|
|
|
|
|
image_input = gr.inputs.Image(type="numpy") |
|
text_input = gr.inputs.Text() |
|
output_text = gr.outputs.Textbox() |
|
|
|
|
|
iface = gr.Interface( |
|
fn=blip2_interface, |
|
inputs=[image_input, text_input, text_input, text_input], |
|
outputs=[output_text, output_text, output_text, output_text], |
|
title="BLIP-2 Image Captioning and VQA", |
|
description="Interact with the BLIP-2 model for image captioning, prompted image captioning, visual question answering, and chat-based prompting.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|