Spaces:
Running
Running
import gradio as gr | |
import gradio.components as grc | |
# from wmdetection.models import get_watermarks_detection_model | |
# from wmdetection.pipelines.predictor import WatermarksPredictor | |
import os, glob | |
import spaces | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
model_name = 'hyunseoki/ReMoDetect-deberta' | |
THESHOLD=3.0 | |
predictor = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
predictor.eval() | |
def predict(text): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
predictor.to(device) | |
tokenized = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
result = predictor(**tokenized).logits[0].cpu().detach().item() | |
AI_score = round(torch.sigmoid(torch.tensor(result-THESHOLD)*2).item(),2) | |
return f'{AI_score*100} %', f'{round(result,2)}' | |
iface = gr.Interface( | |
fn=predict, | |
title="ReMoDetect: Reward Model for LLM Generated Text Detection", | |
description="The continuously finetuned reward model so that can classify LLM generated text from human writen text.", | |
inputs=grc.Textbox(label='INPUT', placeholder="Type here..."), | |
# examples=examples, | |
outputs=[grc.Textbox(label="AI likelihood"), grc.Textbox(label="Raw score")], | |
) | |
iface.launch(share=True) |