Spaces:
Runtime error
Runtime error
File size: 4,922 Bytes
cfde09c f8fdc71 cfde09c a84e7ee f8fdc71 a84e7ee cfde09c a84e7ee cfde09c a84e7ee 89ae773 a84e7ee f8fdc71 cfde09c f8fdc71 cfde09c a84e7ee cfde09c a84e7ee cfde09c a84e7ee cfde09c 0264baa cfde09c 0264baa a84e7ee cfde09c a84e7ee f8fdc71 cfde09c 0264baa cfde09c 0264baa cfde09c dd27380 cfde09c f8fdc71 a84e7ee f8fdc71 a84e7ee f8fdc71 a84e7ee f8fdc71 a84e7ee f8fdc71 a84e7ee f8fdc71 cfde09c f8fdc71 cfde09c f8fdc71 0264baa a84e7ee cfde09c f8fdc71 0264baa f8fdc71 a84e7ee f8fdc71 0264baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
if not torch.cuda.is_available():
with open("patch-cpu") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
sys.path.insert(0, "stylegan2-pytorch")
from model import Generator
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
"""
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["g_ema"])
model.eval()
model.to(device)
model.latent_avg = checkpoint["latent_avg"].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
@torch.inference_mode()
def generate_image(z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(
seed0: int,
seed1: int,
num_intermediate: int,
psi0: float,
psi1: float,
randomize_noise: bool,
) -> list[np.ndarray]:
seed0 = int(np.clip(seed0, 0, MAX_SEED))
seed1 = int(np.clip(seed1, 0, MAX_SEED))
z0 = generate_z(model.style_dim, seed0)
z1 = generate_z(model.style_dim, seed1)
z0 = z0.to(device)
z1 = z1.to(device)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
res = []
for z, psi in zip(zs, psis):
out = generate_image(z, psi, randomize_noise)
res.append(out)
return res
examples = [
[29703, 55376, 3, 0.7, 0.7, False],
[34141, 36864, 5, 0.7, 0.7, False],
[74650, 88322, 7, 0.7, 0.7, False],
[84314, 70317410, 9, 0.7, 0.7, False],
[55376, 55376, 5, 0.3, 1.3, False],
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed_1 = gr.Slider(label="Seed 1", minimum=0, maximum=MAX_SEED, step=1, value=29703)
seed_2 = gr.Slider(label="Seed 2", minimum=0, maximum=MAX_SEED, step=1, value=55376)
num_intermediate_frames = gr.Slider(
label="Number of Intermediate Frames",
minimum=1,
maximum=21,
step=1,
value=3,
)
psi_1 = gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7)
psi_2 = gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7)
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Gallery(label="Output")
inputs = [
seed_1,
seed_2,
num_intermediate_frames,
psi_1,
psi_2,
randomize_noise,
]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=generate_interpolated_images,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=generate_interpolated_images,
inputs=inputs,
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|