Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import io | |
import os | |
import pathlib | |
import tarfile | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from huggingface_hub import hf_hub_download | |
TITLE = 'TADNE (This Anime Does Not Exist) Image Selector' | |
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/. | |
You can view images generated by the TADNE model with seed 0-99999. | |
You can filter images based on predictions by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) model. | |
The original images are 512x512 in size, but here they are resized to 128x128. | |
Known issues: | |
- The `Seed` table in the output doesn't refresh properly in gradio 2.9.1. https://github.com/gradio-app/gradio/issues/921 | |
''' | |
ARTICLE = None | |
TOKEN = os.environ['TOKEN'] | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def download_image_tarball(size: int, dirname: str) -> pathlib.Path: | |
path = hf_hub_download('hysts/TADNE-sample-images', | |
f'{size}/{dirname}.tar', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
return path | |
def load_deepdanbooru_tag_dict() -> dict[str, int]: | |
path = hf_hub_download('hysts/DeepDanbooru', | |
'tags.txt', | |
use_auth_token=TOKEN) | |
with open(path) as f: | |
tags = [line.strip() for line in f.readlines()] | |
return {tag: i for i, tag in enumerate(tags)} | |
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray: | |
path = hf_hub_download('hysts/TADNE-sample-images', | |
f'prediction_results/deepdanbooru/{dirname}.npy', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
return np.load(path) | |
def run( | |
general_tags: list[str], | |
hair_color_tags: list[str], | |
hair_style_tags: list[str], | |
eye_color_tags: list[str], | |
image_color_tags: list[str], | |
other_tags: list[str], | |
additional_tags: str, | |
score_threshold: float, | |
start_index: int, | |
nrows: int, | |
ncols: int, | |
image_size: int, | |
min_seed: int, | |
max_seed: int, | |
dirname: str, | |
tarball_path: pathlib.Path, | |
deepdanbooru_tag_dict: dict[str, int], | |
deepdanbooru_predictions: np.ndarray, | |
) -> tuple[int, np.ndarray, np.ndarray]: | |
hair_color_tags = [f'{color}_hair' for color in hair_color_tags] | |
eye_color_tags = [f'{color}_eyes' for color in eye_color_tags] | |
additional_tags = additional_tags.split(',') | |
tags = general_tags + hair_color_tags + hair_style_tags + \ | |
eye_color_tags + image_color_tags + other_tags + additional_tags | |
tag_indices = [ | |
deepdanbooru_tag_dict[tag] for tag in tags | |
if tag in deepdanbooru_tag_dict | |
] | |
conditions = deepdanbooru_predictions[:, tag_indices] > score_threshold | |
image_indices = np.arange(len(deepdanbooru_predictions)) | |
image_indices = image_indices[conditions.all(axis=1)] | |
start_index = int(start_index) | |
num = nrows * ncols | |
seeds = [] | |
images = [] | |
dummy = np.ones((image_size, image_size, 3), dtype=np.uint8) * 255 | |
with tarfile.TarFile(tarball_path) as tar_file: | |
for index in range(start_index, start_index + num): | |
if index >= len(image_indices): | |
seeds.append(np.nan) | |
images.append(dummy) | |
continue | |
image_index = image_indices[index] | |
seeds.append(image_index) | |
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg') | |
with tar_file.extractfile(member) as f: | |
data = io.BytesIO(f.read()) | |
image = PIL.Image.open(data) | |
image = np.asarray(image) | |
images.append(image) | |
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size, | |
3).transpose(0, 2, 1, 3, 4).reshape( | |
nrows * image_size, | |
ncols * image_size, 3) | |
seeds = np.asarray(seeds).reshape(nrows, ncols) | |
return len(image_indices), res, seeds | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
image_size = 128 | |
min_seed = 0 | |
max_seed = 99999 | |
dirname = '0-99999' | |
tarball_path = download_image_tarball(image_size, dirname) | |
deepdanbooru_tag_dict = load_deepdanbooru_tag_dict() | |
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname) | |
func = functools.partial( | |
run, | |
image_size=image_size, | |
min_seed=min_seed, | |
max_seed=max_seed, | |
dirname=dirname, | |
tarball_path=tarball_path, | |
deepdanbooru_tag_dict=deepdanbooru_tag_dict, | |
deepdanbooru_predictions=deepdanbooru_predictions, | |
) | |
func = functools.update_wrapper(func, run) | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.CheckboxGroup([ | |
'1girl', | |
'1boy', | |
'multiple_girls', | |
'multiple_boys', | |
'looking_at_viewer', | |
], | |
label='General'), | |
gr.inputs.CheckboxGroup([ | |
'aqua', | |
'black', | |
'blonde', | |
'blue', | |
'brown', | |
'green', | |
'grey', | |
'orange', | |
'pink', | |
'purple', | |
'red', | |
'silver', | |
'white', | |
], | |
label='Hair Color'), | |
gr.inputs.CheckboxGroup([ | |
'bangs', | |
'curly_hair', | |
'long_hair', | |
'medium_hair', | |
'messy_hair', | |
'ponytail', | |
'short_hair', | |
'straight_hair', | |
'twintails', | |
], | |
label='Hair Style'), | |
gr.inputs.CheckboxGroup([ | |
'aqua', | |
'black', | |
'blue', | |
'brown', | |
'green', | |
'grey', | |
'orange', | |
'pink', | |
'purple', | |
'red', | |
'white', | |
'yellow', | |
], | |
label='Eye Color'), | |
gr.inputs.CheckboxGroup([ | |
'greyscale', | |
'monochrome', | |
], | |
label='Image Color'), | |
gr.inputs.CheckboxGroup([ | |
'animal_ears', | |
'closed_eyes', | |
'full_body', | |
'hat', | |
'smile', | |
], | |
label='Others'), | |
gr.inputs.Textbox(label='Additional Tags'), | |
gr.inputs.Slider(0, | |
1, | |
step=0.1, | |
default=0.5, | |
label='DeepDanbooru Score Threshold'), | |
gr.inputs.Number(default=0, label='Start Index'), | |
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'), | |
gr.inputs.Slider( | |
1, 10, step=1, default=5, label='Number of Columns'), | |
], | |
[ | |
gr.outputs.Textbox(type='number', label='Number of Found Images'), | |
gr.outputs.Image(type='numpy', label='Output'), | |
gr.outputs.Dataframe(type='numpy', label='Seed'), | |
], | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
theme=args.theme, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |