Spaces:
Runtime error
Runtime error
File size: 6,771 Bytes
d38fcf4 ffaf291 d38fcf4 4a36ff1 1d36332 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 a49cb7c d38fcf4 a49cb7c ffaf291 d38fcf4 ffaf291 cef99be ffaf291 d38fcf4 954c0e5 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 d38fcf4 ffaf291 a49cb7c ffaf291 d38fcf4 ffaf291 a49cb7c ffaf291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
#!/usr/bin/env python
from __future__ import annotations
import io
import tarfile
import gradio as gr
import numpy as np
import PIL.Image
from huggingface_hub import hf_hub_download
TITLE = "TADNE (This Anime Does Not Exist) Image Selector"
DESCRIPTION = """The original TADNE site is https://thisanimedoesnotexist.ai/.
You can view images generated by the TADNE model with seed 0-99999.
You can filter images based on predictions by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) model.
The resolution of the output images in this app is 128x128, but you can
check the original 512x512 images from URLs like
https://thisanimedoesnotexist.ai/slider.html?seed=10000 using the output seeds.
Expected execution time on Hugging Face Spaces: 4s
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
- [DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
"""
def load_deepdanbooru_tag_dict() -> dict[str, int]:
path = hf_hub_download("public-data/DeepDanbooru", "tags.txt")
with open(path) as f:
tags = [line.strip() for line in f.readlines()]
return {tag: i for i, tag in enumerate(tags)}
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
path = hf_hub_download(
"hysts/TADNE-sample-images",
f"prediction_results/deepdanbooru/{dirname}.npy",
repo_type="dataset",
)
return np.load(path)
image_size = 128
min_seed = 0
max_seed = 99999
dirname = "0-99999"
tarball_path = hf_hub_download("hysts/TADNE-sample-images", f"{image_size}/{dirname}.tar", repo_type="dataset")
deepdanbooru_tag_dict = load_deepdanbooru_tag_dict()
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
def run(
general_tags: list[str],
hair_color_tags: list[str],
hair_style_tags: list[str],
eye_color_tags: list[str],
image_color_tags: list[str],
other_tags: list[str],
additional_tags_str: str,
score_threshold: float,
start_index: int,
nrows: int,
ncols: int,
) -> tuple[int, np.ndarray, np.ndarray, str]:
hair_color_tags = [f"{color}_hair" for color in hair_color_tags]
eye_color_tags = [f"{color}_eyes" for color in eye_color_tags]
additional_tags = additional_tags_str.split(",")
tags = (
general_tags
+ hair_color_tags
+ hair_style_tags
+ eye_color_tags
+ image_color_tags
+ other_tags
+ additional_tags
)
missing_tags = [tag for tag in tags if tag not in deepdanbooru_tag_dict]
tag_indices = [deepdanbooru_tag_dict[tag] for tag in tags if tag in deepdanbooru_tag_dict]
conditions = deepdanbooru_predictions[:, tag_indices] > score_threshold
image_indices = np.arange(len(deepdanbooru_predictions))
image_indices = image_indices[conditions.all(axis=1)]
start_index = int(start_index)
num = nrows * ncols
seeds = []
images = []
dummy = np.ones((image_size, image_size, 3), dtype=np.uint8) * 255
with tarfile.TarFile(tarball_path) as tar_file:
for index in range(start_index, start_index + num):
if index >= len(image_indices):
seeds.append(np.nan)
images.append(dummy)
continue
image_index = image_indices[index]
seeds.append(image_index)
member = tar_file.getmember(f"{dirname}/{image_index:07d}.jpg")
with tar_file.extractfile(member) as f: # type: ignore
data = io.BytesIO(f.read())
image = PIL.Image.open(data)
image = np.asarray(image)
images.append(image)
res = (
np.asarray(images)
.reshape(nrows, ncols, image_size, image_size, 3)
.transpose(0, 2, 1, 3, 4)
.reshape(nrows * image_size, ncols * image_size, 3)
)
seeds = np.asarray(seeds).reshape(nrows, ncols)
return len(image_indices), res, seeds, ",".join(missing_tags)
demo = gr.Interface(
fn=run,
inputs=[
gr.CheckboxGroup(
label="General",
choices=[
"1girl",
"1boy",
"multiple_girls",
"multiple_boys",
"looking_at_viewer",
],
),
gr.CheckboxGroup(
label="Hair Color",
choices=[
"aqua",
"black",
"blonde",
"blue",
"brown",
"green",
"grey",
"orange",
"pink",
"purple",
"red",
"silver",
"white",
],
),
gr.CheckboxGroup(
label="Hair Style",
choices=[
"bangs",
"curly_hair",
"long_hair",
"medium_hair",
"messy_hair",
"ponytail",
"short_hair",
"straight_hair",
"twintails",
],
),
gr.CheckboxGroup(
label="Eye Color",
choices=[
"aqua",
"black",
"blue",
"brown",
"green",
"grey",
"orange",
"pink",
"purple",
"red",
"white",
"yellow",
],
),
gr.CheckboxGroup(
label="Image Color",
choices=[
"greyscale",
"monochrome",
],
),
gr.CheckboxGroup(
label="Others",
choices=[
"animal_ears",
"closed_eyes",
"full_body",
"hat",
"smile",
],
),
gr.Textbox(label="Additional Tags"),
gr.Slider(label="DeepDanbooru Score Threshold", minimum=0, maximum=1, step=0.1, value=0.5),
gr.Number(label="Start Index", value=0),
gr.Slider(label="Number of Rows", minimum=0, maximum=10, step=1, value=2),
gr.Slider(label="Number of Columns", minimum=0, maximum=10, step=1, value=5),
],
outputs=[
gr.Textbox(label="Number of Found Images"),
gr.Image(label="Output"),
gr.Dataframe(label="Seed"),
gr.Textbox(label="Missing Tags"),
],
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()
|