hyo37009 commited on
Commit
d8bf9a8
·
1 Parent(s): 5e64881
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +4 -112
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 📈
5
  colorFrom: blue
6
  colorTo: yellow
7
  sdk: gradio
8
- sdk_version: 4.12.0.dev0
9
  app_file: app.py
10
  pinned: false
11
  ---
 
5
  colorFrom: blue
6
  colorTo: yellow
7
  sdk: gradio
8
+ sdk_version: 4.12.0
9
  app_file: app.py
10
  pinned: false
11
  ---
app.py CHANGED
@@ -1,121 +1,13 @@
1
- import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
  from PIL import Image
7
  import requests
8
- from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
9
 
10
- extractor = AutoFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
11
- model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
12
 
13
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
14
  image = Image.open(requests.get(url, stream=True).raw)
15
 
16
  inputs = feature_extractor(images=image, return_tensors="pt")
17
  outputs = model(**inputs)
18
- logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
19
-
20
- def ade_palette():
21
- """ADE20K palette that maps each class to RGB values."""
22
- return [
23
- [255, 0, 0],
24
- [255, 94, 0],
25
- [255, 187, 0],
26
- [255, 228, 0],
27
- [171, 242, 0],
28
- [29, 219, 22],
29
- [0, 216, 255],
30
- [0, 84, 255],
31
- [1, 0, 255],
32
- [95, 0, 255],
33
- [255, 0, 221],
34
- [255, 0, 127],
35
- [152, 0, 0],
36
- [153, 112, 0],
37
- [107, 153, 0],
38
- [0, 51, 153],
39
- [63, 0, 153],
40
- [153, 0, 133]
41
- ]
42
-
43
-
44
- labels_list = []
45
-
46
- with open(r"labels.txt", "r") as fp:
47
- for line in fp:
48
- labels_list.append(line[:-1])
49
-
50
- colormap = np.asarray(ade_palette())
51
-
52
-
53
- def label_to_color_image(label):
54
- if label.ndim != 2:
55
- raise ValueError("Expect 2-D input label")
56
-
57
- if np.max(label) >= len(colormap):
58
- raise ValueError("label value too large.")
59
- return colormap[label]
60
-
61
-
62
- def draw_plot(pred_img, seg):
63
- fig = plt.figure(figsize=(20, 15))
64
-
65
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
66
-
67
- plt.subplot(grid_spec[0])
68
- plt.imshow(pred_img)
69
- plt.axis("off")
70
- LABEL_NAMES = np.asarray(labels_list)
71
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
72
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
73
-
74
- unique_labels = np.unique(seg.numpy().astype("uint8"))
75
- ax = plt.subplot(grid_spec[1])
76
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
77
- ax.yaxis.tick_right()
78
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
79
- plt.xticks([], [])
80
- ax.tick_params(width=0.0, labelsize=25)
81
- return fig
82
-
83
-
84
- def sepia(input_img):
85
- input_img = Image.fromarray(input_img)
86
-
87
- inputs = feature_extractor(images=input_img, return_tensors="tf")
88
- outputs = model(**inputs)
89
- logits = outputs.logits
90
-
91
- logits = tf.transpose(logits, [0, 2, 3, 1])
92
- logits = tf.image.resize(
93
- logits, input_img.size[::-1]
94
- ) # We reverse the shape of `image` because `image.size` returns width and height.
95
- seg = tf.math.argmax(logits, axis=-1)[0]
96
-
97
- color_seg = np.zeros(
98
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
99
- ) # height, width, 3
100
- for label, color in enumerate(colormap):
101
- color_seg[seg.numpy() == label, :] = color
102
-
103
- # Show image + mask
104
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
105
- pred_img = pred_img.astype(np.uint8)
106
-
107
- fig = draw_plot(pred_img, seg)
108
- return fig
109
-
110
-
111
- demo = gr.Interface(
112
- fn=sepia,
113
- inputs=gr.Image(shape=(400, 600)),
114
- outputs=["plot"],
115
- examples=[
116
- "image1.jpg"],
117
- allow_flagging="never",
118
- )
119
-
120
-
121
- demo.launch()
 
1
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
 
 
 
 
2
  from PIL import Image
3
  import requests
 
4
 
5
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024")
6
+ model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024")
7
 
8
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
9
  image = Image.open(requests.get(url, stream=True).raw)
10
 
11
  inputs = feature_extractor(images=image, return_tensors="pt")
12
  outputs = model(**inputs)
13
+ logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)