hyo37009 commited on
Commit
d2d6d64
·
1 Parent(s): 4edff51
Files changed (1) hide show
  1. app.py +37 -61
app.py CHANGED
@@ -1,105 +1,83 @@
1
  import gradio as gr
2
- #
3
  from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
4
  import matplotlib.pyplot as plt
5
  from matplotlib import gridspec
6
  import numpy as np
7
- import tensorflow as tf
8
  from PIL import Image
9
- from io import BytesIO
10
  import requests
11
 
12
- #
13
-
14
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
15
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
16
 
17
- # urls = ["http://farm3.staticflickr.com/2523/3705549787_79049b1b6d_z.jpg",
18
- # "http://farm8.staticflickr.com/7012/6476201279_52db36af64_z.jpg",
19
- # "http://farm8.staticflickr.com/7180/6967423255_a3d65d5f6b_z.jpg",
20
- # "http://farm4.staticflickr.com/3563/3470840644_3378804bea_z.jpg",
21
- # "http://farm9.staticflickr.com/8388/8516454091_0ebdc1130a_z.jpg"]
22
- # images = []
23
- # for i in urls:
24
- # images.append(Image.open(requests.get(i, stream=True).raw))
25
-
26
-
27
- # inputs = feature_extractor(images=image, return_tensors="pt")
28
- # outputs = model(**inputs)
29
- # logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
 
 
 
 
 
 
 
 
30
 
31
  labels_list = []
32
- with open("labels.txt", "r") as fp:
 
33
  for line in fp:
34
  labels_list.append(line[:-1])
35
 
36
- colormap = np.asarray([
37
- [131, 162, 255],
38
- [180, 189, 255],
39
- [255, 227, 187],
40
- [255, 210, 143],
41
- [248, 117, 170],
42
- [255, 223, 223],
43
- [255, 246, 246],
44
- [174, 222, 252],
45
- [150, 194, 145],
46
- [255, 219, 170],
47
- [244, 238, 238],
48
- [50, 38, 83],
49
- [128, 98, 214],
50
- [146, 136, 248],
51
- [255, 210, 215],
52
- [255, 152, 152],
53
- [162, 103, 138],
54
- [63, 29, 56]
55
- ])
56
-
57
- # with open(r"labels.txt", "r") as fp:
58
- # for line in fp:
59
- # labels_list.append(line[:-1])
60
- #
61
- # colormap = np.asarray(my_palette())
62
-
63
 
64
  def greet(input_img):
65
- input_img = Image.open(BytesIO(input_img))
66
-
67
  inputs = feature_extractor(images=input_img, return_tensors="pt")
68
  outputs = model(**inputs)
69
  logits = outputs.logits
70
 
 
71
  logits = logits.detach().numpy()
 
 
 
72
 
73
- logits = tf.transpose(logits.detach().numpy(), [0, 2, 3, 1])
74
- logits = tf.image.resize(logits, input_img.size[::-1])
 
 
 
75
 
76
- seg = tf.math.argmax(logits, axis=-1)[0]
77
- color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
78
  for label, color in enumerate(colormap):
79
- color_seg[seg.numpy() == label, :] = color
80
 
81
  pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
82
  pred_img = pred_img.astype(np.uint8)
83
 
84
- # Draw the plot
85
  fig = draw_plot(pred_img, seg)
86
  return fig
87
 
88
-
89
  def draw_plot(pred_img, seg):
90
  fig = plt.figure(figsize=(20, 15))
91
-
92
  grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
93
 
94
  plt.subplot(grid_spec[0])
95
  plt.imshow(pred_img)
96
  plt.axis("off")
97
-
98
  LABEL_NAMES = np.asarray(labels_list)
99
  FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
100
  FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
101
 
102
- unique_labels = np.unique(seg.numpy().astype("uint8"))
103
  ax = plt.subplot(grid_spec[1])
104
  plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
105
  ax.yaxis.tick_right()
@@ -108,7 +86,6 @@ def draw_plot(pred_img, seg):
108
  ax.tick_params(width=0.0, labelsize=25)
109
  return fig
110
 
111
-
112
  def label_to_color_image(label):
113
  if label.ndim != 2:
114
  raise ValueError("Expect 2-D input label")
@@ -117,7 +94,6 @@ def label_to_color_image(label):
117
  raise ValueError("label value too large.")
118
  return colormap[label]
119
 
120
-
121
  iface = gr.Interface(
122
  fn=greet,
123
  inputs="image",
@@ -125,4 +101,4 @@ iface = gr.Interface(
125
  examples=["image (1).jpg", "image (2).jpg", "image (3).jpg", "image (4).jpg", "image (5).jpg"],
126
  allow_flagging="never"
127
  )
128
- iface.launch(share=True)
 
1
  import gradio as gr
 
2
  from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
3
  import matplotlib.pyplot as plt
4
  from matplotlib import gridspec
5
  import numpy as np
 
6
  from PIL import Image
 
7
  import requests
8
 
9
+ # Load the pre-trained model and feature extractor
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
11
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
12
 
13
+ def my_palette():
14
+ return [
15
+ [131, 162, 255],
16
+ [180, 189, 255],
17
+ [255, 227, 187],
18
+ [255, 210, 143],
19
+ [248, 117, 170],
20
+ [255, 223, 223],
21
+ [255, 246, 246],
22
+ [174, 222, 252],
23
+ [150, 194, 145],
24
+ [255, 219, 170],
25
+ [244, 238, 238],
26
+ [50, 38, 83],
27
+ [128, 98, 214],
28
+ [146, 136, 248],
29
+ [255, 210, 215],
30
+ [255, 152, 152],
31
+ [162, 103, 138],
32
+ [63, 29, 56]
33
+ ]
34
 
35
  labels_list = []
36
+
37
+ with open(r"labels.txt", "r") as fp:
38
  for line in fp:
39
  labels_list.append(line[:-1])
40
 
41
+ colormap = np.asarray(my_palette())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  def greet(input_img):
 
 
44
  inputs = feature_extractor(images=input_img, return_tensors="pt")
45
  outputs = model(**inputs)
46
  logits = outputs.logits
47
 
48
+ # Use .detach().numpy() to convert PyTorch tensor to NumPy array
49
  logits = logits.detach().numpy()
50
+ logits = np.transpose(logits, [0, 2, 3, 1])
51
+
52
+ logits = np.resize(logits, input_img.size[::-1])
53
 
54
+ seg = np.argmax(logits, axis=-1)[0]
55
+
56
+ color_seg = np.zeros(
57
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
58
+ )
59
 
 
 
60
  for label, color in enumerate(colormap):
61
+ color_seg[seg == label, :] = color
62
 
63
  pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
64
  pred_img = pred_img.astype(np.uint8)
65
 
 
66
  fig = draw_plot(pred_img, seg)
67
  return fig
68
 
 
69
  def draw_plot(pred_img, seg):
70
  fig = plt.figure(figsize=(20, 15))
 
71
  grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
72
 
73
  plt.subplot(grid_spec[0])
74
  plt.imshow(pred_img)
75
  plt.axis("off")
 
76
  LABEL_NAMES = np.asarray(labels_list)
77
  FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
78
  FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
79
 
80
+ unique_labels = np.unique(seg.astype("uint8"))
81
  ax = plt.subplot(grid_spec[1])
82
  plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
83
  ax.yaxis.tick_right()
 
86
  ax.tick_params(width=0.0, labelsize=25)
87
  return fig
88
 
 
89
  def label_to_color_image(label):
90
  if label.ndim != 2:
91
  raise ValueError("Expect 2-D input label")
 
94
  raise ValueError("label value too large.")
95
  return colormap[label]
96
 
 
97
  iface = gr.Interface(
98
  fn=greet,
99
  inputs="image",
 
101
  examples=["image (1).jpg", "image (2).jpg", "image (3).jpg", "image (4).jpg", "image (5).jpg"],
102
  allow_flagging="never"
103
  )
104
+ iface.launch(share=True)