Hyma Roshini Gompa
commited on
Commit
·
11cb5b8
1
Parent(s):
4bf0eb2
Uploading correct updated app.py
Browse files- .idea/.gitignore +8 -0
- .idea/LegalDoc.iml +9 -0
- .idea/misc.xml +6 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- app.py +823 -449
- stage_4.py +0 -449
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/LegalDoc.iml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="JAVA_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager" inherit-compiler-output="true">
|
4 |
+
<exclude-output />
|
5 |
+
<content url="file://$MODULE_DIR$" />
|
6 |
+
<orderEntry type="inheritedJdk" />
|
7 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
8 |
+
</component>
|
9 |
+
</module>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" languageLevel="JDK_17" default="true" project-jdk-name="23" project-jdk-type="JavaSDK">
|
4 |
+
<output url="file://$PROJECT_DIR$/out" />
|
5 |
+
</component>
|
6 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/LegalDoc.iml" filepath="$PROJECT_DIR$/.idea/LegalDoc.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
app.py
CHANGED
@@ -1,449 +1,823 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import shelve
|
3 |
-
import docx2txt
|
4 |
-
import PyPDF2
|
5 |
-
import time # Used to simulate typing effect
|
6 |
-
import nltk
|
7 |
-
import re
|
8 |
-
import os
|
9 |
-
import time # already imported in your code
|
10 |
-
import
|
11 |
-
|
12 |
-
import
|
13 |
-
|
14 |
-
|
15 |
-
import
|
16 |
-
|
17 |
-
|
18 |
-
from transformers import
|
19 |
-
|
20 |
-
import
|
21 |
-
import
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
return "
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
st.
|
443 |
-
"
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import shelve
|
3 |
+
import docx2txt
|
4 |
+
import PyPDF2
|
5 |
+
import time # Used to simulate typing effect
|
6 |
+
import nltk
|
7 |
+
import re
|
8 |
+
import os
|
9 |
+
import time # already imported in your code
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
import torch
|
12 |
+
from sentence_transformers import SentenceTransformer, util
|
13 |
+
nltk.download('punkt')
|
14 |
+
import hashlib
|
15 |
+
from nltk import sent_tokenize
|
16 |
+
nltk.download('punkt_tab')
|
17 |
+
from transformers import LEDTokenizer, LEDForConditionalGeneration
|
18 |
+
from transformers import pipeline
|
19 |
+
import asyncio
|
20 |
+
import dateutil.parser
|
21 |
+
from datetime import datetime
|
22 |
+
import sys
|
23 |
+
|
24 |
+
from openai import OpenAI
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
|
28 |
+
# Fix for RuntimeError: no running event loop on Windows
|
29 |
+
if sys.platform.startswith("win"):
|
30 |
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
31 |
+
|
32 |
+
st.set_page_config(page_title="Legal Document Summarizer", layout="wide")
|
33 |
+
|
34 |
+
if "processed" not in st.session_state:
|
35 |
+
st.session_state.processed = False
|
36 |
+
if "last_uploaded_hash" not in st.session_state:
|
37 |
+
st.session_state.last_uploaded_hash = None
|
38 |
+
if "chat_prompt_processed" not in st.session_state:
|
39 |
+
st.session_state.chat_prompt_processed = False
|
40 |
+
|
41 |
+
if "embedding_text" not in st.session_state:
|
42 |
+
st.session_state.embedding_text = None
|
43 |
+
|
44 |
+
if "document_context" not in st.session_state:
|
45 |
+
st.session_state.document_context = None
|
46 |
+
|
47 |
+
if "last_prompt_hash" not in st.session_state:
|
48 |
+
st.session_state.last_prompt_hash = None
|
49 |
+
|
50 |
+
|
51 |
+
st.title("📄 Legal Document Summarizer (Simple RAG with evaluation results)")
|
52 |
+
|
53 |
+
USER_AVATAR = "👤"
|
54 |
+
BOT_AVATAR = "🤖"
|
55 |
+
|
56 |
+
# Load chat history
|
57 |
+
def load_chat_history():
|
58 |
+
with shelve.open("chat_history") as db:
|
59 |
+
return db.get("messages", [])
|
60 |
+
|
61 |
+
# Save chat history
|
62 |
+
def save_chat_history(messages):
|
63 |
+
with shelve.open("chat_history") as db:
|
64 |
+
db["messages"] = messages
|
65 |
+
|
66 |
+
# Function to limit text preview to 500 words
|
67 |
+
def limit_text(text, word_limit=500):
|
68 |
+
words = text.split()
|
69 |
+
return " ".join(words[:word_limit]) + ("..." if len(words) > word_limit else "")
|
70 |
+
|
71 |
+
|
72 |
+
# CLEAN AND NORMALIZE TEXT
|
73 |
+
|
74 |
+
|
75 |
+
def clean_text(text):
|
76 |
+
# Remove newlines and extra spaces
|
77 |
+
text = text.replace('\r\n', ' ').replace('\n', ' ')
|
78 |
+
text = re.sub(r'\s+', ' ', text)
|
79 |
+
|
80 |
+
# Remove page number markers like "Page 1 of 10"
|
81 |
+
text = re.sub(r'Page\s+\d+\s+of\s+\d+', '', text, flags=re.IGNORECASE)
|
82 |
+
|
83 |
+
# Remove long dashed or underscored lines
|
84 |
+
text = re.sub(r'[_]{5,}', '', text) # Lines with underscores: _____
|
85 |
+
text = re.sub(r'[-]{5,}', '', text) # Lines with hyphens: -----
|
86 |
+
|
87 |
+
# Remove long dotted separators
|
88 |
+
text = re.sub(r'[.]{4,}', '', text) # Dots like "......" or ".............."
|
89 |
+
|
90 |
+
# Trim final leading/trailing whitespace
|
91 |
+
text = text.strip()
|
92 |
+
|
93 |
+
return text
|
94 |
+
|
95 |
+
|
96 |
+
#######################################################################################################################
|
97 |
+
|
98 |
+
|
99 |
+
# LOADING MODELS FOR DIVIDING TEXT INTO SECTIONS
|
100 |
+
|
101 |
+
# Load token from .env file
|
102 |
+
load_dotenv()
|
103 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
104 |
+
|
105 |
+
client = OpenAI(
|
106 |
+
base_url="https://api.studio.nebius.com/v1/",
|
107 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
108 |
+
)
|
109 |
+
|
110 |
+
# print("API Key:", os.getenv("OPENAI_API_KEY")) # Temporary for debugging
|
111 |
+
|
112 |
+
|
113 |
+
# Load once at the top (cache for performance)
|
114 |
+
@st.cache_resource
|
115 |
+
def load_local_zero_shot_classifier():
|
116 |
+
return pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
117 |
+
|
118 |
+
local_classifier = load_local_zero_shot_classifier()
|
119 |
+
|
120 |
+
|
121 |
+
SECTION_LABELS = ["Facts", "Arguments", "Judgement", "Others"]
|
122 |
+
|
123 |
+
def classify_chunk(text):
|
124 |
+
result = local_classifier(text, candidate_labels=SECTION_LABELS)
|
125 |
+
return result["labels"][0]
|
126 |
+
|
127 |
+
|
128 |
+
# NEW: NLP-based sectioning using zero-shot classification
|
129 |
+
def section_by_zero_shot(text):
|
130 |
+
sections = {"Facts": "", "Arguments": "", "Judgment": "", "Others": ""}
|
131 |
+
sentences = sent_tokenize(text)
|
132 |
+
chunk = ""
|
133 |
+
|
134 |
+
for i, sent in enumerate(sentences):
|
135 |
+
chunk += sent + " "
|
136 |
+
if (i + 1) % 3 == 0 or i == len(sentences) - 1:
|
137 |
+
label = classify_chunk(chunk.strip())
|
138 |
+
print(f"🔎 Chunk: {chunk[:60]}...\n🔖 Predicted Label: {label}")
|
139 |
+
# 👇 Normalize label (title case and fallback)
|
140 |
+
label = label.capitalize()
|
141 |
+
if label not in sections:
|
142 |
+
label = "Others"
|
143 |
+
sections[label] += chunk + "\n"
|
144 |
+
chunk = ""
|
145 |
+
|
146 |
+
return sections
|
147 |
+
|
148 |
+
#######################################################################################################################
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
# EXTRACTING TEXT FROM UPLOADED FILES
|
153 |
+
|
154 |
+
# Function to extract text from uploaded file
|
155 |
+
def extract_text(file):
|
156 |
+
if file.name.endswith(".pdf"):
|
157 |
+
reader = PyPDF2.PdfReader(file)
|
158 |
+
full_text = "\n".join(page.extract_text() or "" for page in reader.pages)
|
159 |
+
elif file.name.endswith(".docx"):
|
160 |
+
full_text = docx2txt.process(file)
|
161 |
+
elif file.name.endswith(".txt"):
|
162 |
+
full_text = file.read().decode("utf-8")
|
163 |
+
else:
|
164 |
+
return "Unsupported file type."
|
165 |
+
|
166 |
+
return full_text # Full text is needed for summarization
|
167 |
+
|
168 |
+
|
169 |
+
#######################################################################################################################
|
170 |
+
|
171 |
+
# EXTRACTIVE AND ABSTRACTIVE SUMMARIZATION
|
172 |
+
|
173 |
+
|
174 |
+
@st.cache_resource
|
175 |
+
def load_legalbert():
|
176 |
+
return SentenceTransformer("nlpaueb/legal-bert-base-uncased")
|
177 |
+
|
178 |
+
|
179 |
+
legalbert_model = load_legalbert()
|
180 |
+
|
181 |
+
@st.cache_resource
|
182 |
+
def load_led():
|
183 |
+
tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
|
184 |
+
model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
|
185 |
+
return tokenizer, model
|
186 |
+
|
187 |
+
tokenizer_led, model_led = load_led()
|
188 |
+
|
189 |
+
|
190 |
+
def legalbert_extractive_summary(text, top_ratio=0.5):
|
191 |
+
sentences = sent_tokenize(text)
|
192 |
+
top_k = max(3, int(len(sentences) * top_ratio))
|
193 |
+
if len(sentences) <= top_k:
|
194 |
+
return text
|
195 |
+
sentence_embeddings = legalbert_model.encode(sentences, convert_to_tensor=True)
|
196 |
+
doc_embedding = torch.mean(sentence_embeddings, dim=0)
|
197 |
+
cosine_scores = util.pytorch_cos_sim(doc_embedding, sentence_embeddings)[0]
|
198 |
+
top_results = torch.topk(cosine_scores, k=top_k)
|
199 |
+
selected_sentences = [sentences[i] for i in sorted(top_results.indices.tolist())]
|
200 |
+
return " ".join(selected_sentences)
|
201 |
+
|
202 |
+
# Add LED Abstractive Summarization
|
203 |
+
|
204 |
+
|
205 |
+
def led_abstractive_summary(text, max_length=512, min_length=100):
|
206 |
+
inputs = tokenizer_led(
|
207 |
+
text, return_tensors="pt", padding="max_length",
|
208 |
+
truncation=True, max_length=4096
|
209 |
+
)
|
210 |
+
global_attention_mask = torch.zeros_like(inputs["input_ids"])
|
211 |
+
global_attention_mask[:, 0] = 1
|
212 |
+
|
213 |
+
outputs = model_led.generate(
|
214 |
+
inputs["input_ids"],
|
215 |
+
attention_mask=inputs["attention_mask"],
|
216 |
+
global_attention_mask=global_attention_mask,
|
217 |
+
max_length=max_length,
|
218 |
+
min_length=min_length,
|
219 |
+
num_beams=4, # Use beam search
|
220 |
+
repetition_penalty=2.0, # Penalize repetition
|
221 |
+
length_penalty=1.0,
|
222 |
+
early_stopping=True,
|
223 |
+
no_repeat_ngram_size=4 # Prevent repeated phrases
|
224 |
+
)
|
225 |
+
|
226 |
+
return tokenizer_led.decode(outputs[0], skip_special_tokens=True)
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
def led_abstractive_summary_chunked(text, max_tokens=3000):
|
231 |
+
sentences = sent_tokenize(text)
|
232 |
+
current_chunk, chunks, summaries = "", [], []
|
233 |
+
for sent in sentences:
|
234 |
+
if len(tokenizer_led(current_chunk + sent)["input_ids"]) > max_tokens:
|
235 |
+
chunks.append(current_chunk)
|
236 |
+
current_chunk = sent
|
237 |
+
else:
|
238 |
+
current_chunk += " " + sent
|
239 |
+
if current_chunk:
|
240 |
+
chunks.append(current_chunk)
|
241 |
+
for chunk in chunks:
|
242 |
+
inputs = tokenizer_led(chunk, return_tensors="pt", padding="max_length", truncation=True, max_length=4096)
|
243 |
+
global_attention_mask = torch.zeros_like(inputs["input_ids"])
|
244 |
+
global_attention_mask[:, 0] = 1
|
245 |
+
output = model_led.generate(
|
246 |
+
inputs["input_ids"],
|
247 |
+
attention_mask=inputs["attention_mask"],
|
248 |
+
global_attention_mask=global_attention_mask,
|
249 |
+
max_length=512,
|
250 |
+
min_length=100,
|
251 |
+
num_beams=4,
|
252 |
+
repetition_penalty=2.0,
|
253 |
+
length_penalty=1.0,
|
254 |
+
early_stopping=True,
|
255 |
+
no_repeat_ngram_size=4,
|
256 |
+
)
|
257 |
+
summaries.append(tokenizer_led.decode(output[0], skip_special_tokens=True))
|
258 |
+
return " ".join(summaries)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
def extract_timeline(text):
|
263 |
+
sentences = sent_tokenize(text)
|
264 |
+
timeline = []
|
265 |
+
|
266 |
+
for sentence in sentences:
|
267 |
+
try:
|
268 |
+
# Try fuzzy parsing on the sentence
|
269 |
+
parsed = dateutil.parser.parse(sentence, fuzzy=True)
|
270 |
+
|
271 |
+
# Validate year: exclude years before 1950 unless explicitly whitelisted
|
272 |
+
current_year = datetime.now().year
|
273 |
+
if 1900 <= parsed.year <= current_year + 5:
|
274 |
+
# Additional filtering: discard misleading past years unless contextually valid
|
275 |
+
if parsed.year < 1950 and parsed.year not in [2020, 2022, 2023]:
|
276 |
+
continue
|
277 |
+
|
278 |
+
# Further validation: ignore obviously wrong patterns like years starting with 0
|
279 |
+
if re.match(r"^0\d{3}$", str(parsed.year)):
|
280 |
+
continue
|
281 |
+
|
282 |
+
# Passed all checks
|
283 |
+
timeline.append((parsed.date(), sentence.strip()))
|
284 |
+
except Exception:
|
285 |
+
continue
|
286 |
+
|
287 |
+
# Remove duplicates and sort
|
288 |
+
unique_timeline = list(set(timeline))
|
289 |
+
return sorted(unique_timeline, key=lambda x: x[0])
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
def format_timeline_for_chat(timeline_data):
|
294 |
+
if not timeline_data:
|
295 |
+
return "_No significant timeline events detected._"
|
296 |
+
|
297 |
+
formatted = "🗓️ **Timeline of Events**\n\n"
|
298 |
+
for date, event in timeline_data:
|
299 |
+
formatted += f"**{date.strftime('%Y-%m-%d')}**: {event}\n\n"
|
300 |
+
return formatted.strip()
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
def hybrid_summary_hierarchical(text, top_ratio=0.8):
|
305 |
+
cleaned_text = clean_text(text)
|
306 |
+
sections = section_by_zero_shot(cleaned_text)
|
307 |
+
|
308 |
+
structured_summary = {} # <-- hierarchical summary here
|
309 |
+
|
310 |
+
for name, content in sections.items():
|
311 |
+
if content.strip():
|
312 |
+
# Extractive summary
|
313 |
+
extractive = legalbert_extractive_summary(content, top_ratio)
|
314 |
+
|
315 |
+
# Abstractive summary
|
316 |
+
abstractive = led_abstractive_summary_chunked(extractive)
|
317 |
+
|
318 |
+
# Store in dictionary (hierarchical structure)
|
319 |
+
structured_summary[name] = {
|
320 |
+
"extractive": extractive,
|
321 |
+
"abstractive": abstractive
|
322 |
+
}
|
323 |
+
|
324 |
+
return structured_summary
|
325 |
+
|
326 |
+
|
327 |
+
from sentence_transformers import SentenceTransformer
|
328 |
+
|
329 |
+
@st.cache_resource
|
330 |
+
def load_embedder():
|
331 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
332 |
+
|
333 |
+
embedder = load_embedder()
|
334 |
+
|
335 |
+
# import faiss
|
336 |
+
import numpy as np
|
337 |
+
|
338 |
+
|
339 |
+
# def build_faiss_index(chunks):
|
340 |
+
# embedder = load_embedder()
|
341 |
+
# embeddings = embedder.encode(chunks, convert_to_tensor=False)
|
342 |
+
# dimension = embeddings[0].shape[0]
|
343 |
+
# index = faiss.IndexFlatL2(dimension)
|
344 |
+
# index.add(np.array(embeddings).astype("float32"))
|
345 |
+
# st.session_state["embedder"] = embedder
|
346 |
+
# return index, chunks # ✅ Return both
|
347 |
+
|
348 |
+
|
349 |
+
def retrieve_top_k(query, chunks, index, k=3):
|
350 |
+
query_vec = embedder.encode([query])
|
351 |
+
D, I = index.search(np.array(query_vec).astype("float32"), k)
|
352 |
+
return [chunks[i] for i in I[0]]
|
353 |
+
|
354 |
+
|
355 |
+
def chunk_text_custom(text, n=1000, overlap=200):
|
356 |
+
chunks = []
|
357 |
+
for i in range(0, len(text), n - overlap):
|
358 |
+
chunks.append(text[i:i + n])
|
359 |
+
return chunks
|
360 |
+
|
361 |
+
def create_embeddings(text_chunks, model="BAAI/bge-en-icl"):
|
362 |
+
response = client.embeddings.create(
|
363 |
+
model=model,
|
364 |
+
input=text_chunks
|
365 |
+
)
|
366 |
+
return response.data
|
367 |
+
|
368 |
+
def cosine_similarity(vec1, vec2):
|
369 |
+
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
370 |
+
|
371 |
+
|
372 |
+
def semantic_search(query, text_chunks, chunk_embeddings, k=7):
|
373 |
+
query_embedding = create_embeddings([query])[0].embedding
|
374 |
+
scores = [(i, cosine_similarity(np.array(query_embedding), np.array(emb.embedding))) for i, emb in enumerate(chunk_embeddings)]
|
375 |
+
top_indices = [idx for idx, _ in sorted(scores, key=lambda x: x[1], reverse=True)[:k]]
|
376 |
+
return [text_chunks[i] for i in top_indices]
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
def generate_response(system_prompt, user_message, model="meta-llama/Llama-3.2-3B-Instruct"):
|
381 |
+
return client.chat.completions.create(
|
382 |
+
model=model,
|
383 |
+
temperature=0,
|
384 |
+
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_message}]
|
385 |
+
).choices[0].message.content
|
386 |
+
|
387 |
+
|
388 |
+
def rag_query_response(prompt, embedding_text):
|
389 |
+
chunks = chunk_text_custom(embedding_text)
|
390 |
+
chunk_embeddings = create_embeddings(chunks)
|
391 |
+
top_chunks = semantic_search(prompt, chunks, chunk_embeddings, k=5)
|
392 |
+
context_block = "\n\n".join([f"Context {i+1}:\n{chunk}" for i, chunk in enumerate(top_chunks)])
|
393 |
+
user_prompt = f"{context_block}\n\nQuestion: {prompt}"
|
394 |
+
system_instruction = (
|
395 |
+
"You are an AI assistant that strictly answers based on the given context. "
|
396 |
+
"If the answer cannot be derived directly from the context, respond: 'I do not have enough information to answer that.'"
|
397 |
+
)
|
398 |
+
return generate_response(system_instruction, user_prompt)
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
|
403 |
+
#######################################################################################################################
|
404 |
+
|
405 |
+
|
406 |
+
# STREAMLIT APP INTERFACE CODE
|
407 |
+
|
408 |
+
# Initialize or load chat history
|
409 |
+
if "messages" not in st.session_state:
|
410 |
+
st.session_state.messages = load_chat_history()
|
411 |
+
|
412 |
+
# Initialize last_uploaded if not set
|
413 |
+
if "last_uploaded" not in st.session_state:
|
414 |
+
st.session_state.last_uploaded = None
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
# Sidebar with a button to delete chat history
|
419 |
+
with st.sidebar:
|
420 |
+
st.subheader("⚙️ Options")
|
421 |
+
if st.button("Delete Chat History"):
|
422 |
+
st.session_state.messages = []
|
423 |
+
st.session_state.last_uploaded = None
|
424 |
+
st.session_state.processed = False
|
425 |
+
st.session_state.chat_prompt_processed = False
|
426 |
+
save_chat_history([])
|
427 |
+
|
428 |
+
|
429 |
+
# Display chat messages with a typing effect
|
430 |
+
def display_with_typing_effect(text, speed=0.005):
|
431 |
+
placeholder = st.empty()
|
432 |
+
displayed_text = ""
|
433 |
+
for char in text:
|
434 |
+
displayed_text += char
|
435 |
+
placeholder.markdown(displayed_text)
|
436 |
+
time.sleep(speed)
|
437 |
+
return displayed_text
|
438 |
+
|
439 |
+
# Show existing chat messages
|
440 |
+
for message in st.session_state.messages:
|
441 |
+
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
|
442 |
+
with st.chat_message(message["role"], avatar=avatar):
|
443 |
+
st.markdown(message["content"])
|
444 |
+
|
445 |
+
|
446 |
+
# Standard chat input field
|
447 |
+
prompt = st.chat_input("Type a message...")
|
448 |
+
|
449 |
+
|
450 |
+
# Place uploader before the chat so it's always visible
|
451 |
+
with st.container():
|
452 |
+
st.subheader("📎 Upload a Legal Document")
|
453 |
+
uploaded_file = st.file_uploader("Upload a file (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
|
454 |
+
reprocess_btn = st.button("🔄 Reprocess Last Uploaded File")
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
+
# Hashing logic
|
459 |
+
def get_file_hash(file):
|
460 |
+
file.seek(0)
|
461 |
+
content = file.read()
|
462 |
+
file.seek(0)
|
463 |
+
return hashlib.md5(content).hexdigest()
|
464 |
+
|
465 |
+
# Function to prepare text for embedding
|
466 |
+
# This function combines the extractive and abstractive summaries into a single string for embedding
|
467 |
+
def prepare_text_for_embedding(summary_dict, timeline_data):
|
468 |
+
combined_chunks = []
|
469 |
+
|
470 |
+
for section, content in summary_dict.items():
|
471 |
+
ext = content.get("extractive", "").strip()
|
472 |
+
abs = content.get("abstractive", "").strip()
|
473 |
+
if ext:
|
474 |
+
combined_chunks.append(f"{section} - Extractive Summary:\n{ext}")
|
475 |
+
if abs:
|
476 |
+
combined_chunks.append(f"{section} - Abstractive Summary:\n{abs}")
|
477 |
+
|
478 |
+
if timeline_data:
|
479 |
+
|
480 |
+
combined_chunks.append("Timeline of Events:\n")
|
481 |
+
for date, event in timeline_data:
|
482 |
+
combined_chunks.append(f"{date.strftime('%Y-%m-%d')}: {event.strip()}")
|
483 |
+
|
484 |
+
return "\n\n".join(combined_chunks)
|
485 |
+
|
486 |
+
|
487 |
+
###################################################################################################################
|
488 |
+
|
489 |
+
# Store cleaned text and FAISS index only when document is processed
|
490 |
+
|
491 |
+
# Embedding for chunking
|
492 |
+
|
493 |
+
|
494 |
+
def chunk_text(text, max_tokens=100):
|
495 |
+
sentences = sent_tokenize(text)
|
496 |
+
chunks, current_chunk = [], ""
|
497 |
+
|
498 |
+
for sentence in sentences:
|
499 |
+
if len(current_chunk.split()) + len(sentence.split()) > max_tokens:
|
500 |
+
chunks.append(current_chunk.strip())
|
501 |
+
current_chunk = sentence
|
502 |
+
else:
|
503 |
+
current_chunk += " " + sentence
|
504 |
+
if current_chunk:
|
505 |
+
chunks.append(current_chunk.strip())
|
506 |
+
|
507 |
+
return chunks
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
##############################################################################################################
|
512 |
+
|
513 |
+
user_role = st.sidebar.selectbox(
|
514 |
+
"🎭 Select Your Role for Custom Summary",
|
515 |
+
["General", "Judge", "Lawyer", "Student"]
|
516 |
+
)
|
517 |
+
|
518 |
+
|
519 |
+
def role_based_filter(section, summary, role):
|
520 |
+
if role == "General":
|
521 |
+
return summary
|
522 |
+
|
523 |
+
filtered_summary = {
|
524 |
+
"extractive": "",
|
525 |
+
"abstractive": ""
|
526 |
+
}
|
527 |
+
|
528 |
+
if role == "Judge" and section in ["Judgement", "Facts"]:
|
529 |
+
filtered_summary = summary
|
530 |
+
elif role == "Lawyer" and section in ["Arguments", "Facts"]:
|
531 |
+
filtered_summary = summary
|
532 |
+
elif role == "Student" and section in ["Facts"]:
|
533 |
+
filtered_summary = summary
|
534 |
+
|
535 |
+
return filtered_summary
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
#########################################################################################################################
|
542 |
+
|
543 |
+
|
544 |
+
if uploaded_file:
|
545 |
+
file_hash = get_file_hash(uploaded_file)
|
546 |
+
if file_hash != st.session_state.last_uploaded_hash or reprocess_btn:
|
547 |
+
st.session_state.processed = False
|
548 |
+
|
549 |
+
# if is_new_file or reprocess_btn:
|
550 |
+
# st.session_state.processed = False
|
551 |
+
|
552 |
+
if not st.session_state.processed:
|
553 |
+
start_time = time.time()
|
554 |
+
raw_text = extract_text(uploaded_file)
|
555 |
+
summary_dict = hybrid_summary_hierarchical(raw_text)
|
556 |
+
timeline_data = extract_timeline(clean_text(raw_text))
|
557 |
+
embedding_text = prepare_text_for_embedding(summary_dict, timeline_data)
|
558 |
+
|
559 |
+
# Generate and display RAG-based summary
|
560 |
+
|
561 |
+
st.session_state.document_context = embedding_text
|
562 |
+
|
563 |
+
role_specific_prompt = f"As a {user_role}, summarize the legal document focusing on the most relevant aspects such as facts, arguments, and judgments tailored for your role. Include key legal reasoning and timeline of events where necessary."
|
564 |
+
rag_summary = rag_query_response(role_specific_prompt, embedding_text)
|
565 |
+
|
566 |
+
st.session_state.generated_summary = rag_summary
|
567 |
+
|
568 |
+
|
569 |
+
st.session_state.messages.append({"role": "user", "content": f"📤 Uploaded **{uploaded_file.name}**"})
|
570 |
+
st.session_state.messages.append({"role": "assistant", "content": rag_summary})
|
571 |
+
|
572 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
573 |
+
display_with_typing_effect(rag_summary)
|
574 |
+
|
575 |
+
processing_time = round((time.time() - start_time) / 60, 2)
|
576 |
+
st.info(f"⏱️ Response generated in **{processing_time} minutes**.")
|
577 |
+
|
578 |
+
st.session_state.last_uploaded_hash = file_hash
|
579 |
+
st.session_state.processed = True
|
580 |
+
st.session_state.last_prompt_hash = None
|
581 |
+
save_chat_history(st.session_state.messages)
|
582 |
+
|
583 |
+
|
584 |
+
# if prompt:
|
585 |
+
# word_count = len(prompt.split())
|
586 |
+
# # Document ingestion if long and not yet processed
|
587 |
+
# if word_count > 30 and not st.session_state.processed:
|
588 |
+
# raw_text = prompt
|
589 |
+
# start_time = time.time()
|
590 |
+
# summary_dict = hybrid_summary_hierarchical(raw_text)
|
591 |
+
# timeline_data = extract_timeline(clean_text(raw_text))
|
592 |
+
# embedding_text = prepare_text_for_embedding(summary_dict, timeline_data)
|
593 |
+
|
594 |
+
# # Save document context for future queries
|
595 |
+
# st.session_state.document_context = embedding_text
|
596 |
+
# st.session_state.processed = True
|
597 |
+
|
598 |
+
# # Initial role-based summary
|
599 |
+
# role_prompt = f"As a {user_role}, summarize the document focusing on facts, arguments, judgments, plus timeline of events."
|
600 |
+
# initial_summary = rag_query_response(role_prompt, embedding_text)
|
601 |
+
# st.session_state.messages.append({"role": "user", "content": "📥 Document ingested"})
|
602 |
+
# st.session_state.messages.append({"role": "assistant", "content": initial_summary})
|
603 |
+
# with st.chat_message("assistant", avatar=BOT_AVATAR):
|
604 |
+
# display_with_typing_effect(initial_summary)
|
605 |
+
# # Step 10: Show time
|
606 |
+
# processing_time = round((time.time() - start_time) / 60, 2)
|
607 |
+
# st.info(f"⏱️ Response generated in **{processing_time} minutes**.")
|
608 |
+
# save_chat_history(st.session_state.messages)
|
609 |
+
|
610 |
+
# # Querying phase: use existing document context
|
611 |
+
# elif st.session_state.processed:
|
612 |
+
# if not st.session_state.document_context:
|
613 |
+
# st.warning("⚠️ No document context found. Please upload or paste your document first (30+ words).")
|
614 |
+
# else:
|
615 |
+
# answer = rag_query_response(prompt, st.session_state.document_context)
|
616 |
+
|
617 |
+
# st.session_state.messages.append({"role": "user", "content": prompt})
|
618 |
+
# st.session_state.messages.append({"role": "assistant", "content": answer})
|
619 |
+
# with st.chat_message("assistant", avatar=BOT_AVATAR):
|
620 |
+
# display_with_typing_effect(answer)
|
621 |
+
# save_chat_history(st.session_state.messages)
|
622 |
+
|
623 |
+
# # Prompt too short and no document yet
|
624 |
+
# else:
|
625 |
+
# with st.chat_message("assistant", avatar=BOT_AVATAR):
|
626 |
+
# st.markdown("❗ Please first paste your document (more than 30 words), then ask questions.")
|
627 |
+
|
628 |
+
|
629 |
+
if prompt:
|
630 |
+
words = prompt.split()
|
631 |
+
word_count = len(words)
|
632 |
+
|
633 |
+
# compute a quick hash to detect “new” direct-paste
|
634 |
+
prompt_hash = hashlib.md5(prompt.encode("utf-8")).hexdigest()
|
635 |
+
|
636 |
+
# --- 1) LONG prompts always re-ingest as a NEW doc ---
|
637 |
+
if word_count > 30 and prompt_hash != st.session_state.last_prompt_hash:
|
638 |
+
# mark this as our new “last prompt”
|
639 |
+
st.session_state.last_prompt_hash = prompt_hash
|
640 |
+
|
641 |
+
# ingest exactly like you do for an uploaded file
|
642 |
+
raw_text = prompt
|
643 |
+
start_time = time.time()
|
644 |
+
|
645 |
+
summary_dict = hybrid_summary_hierarchical(raw_text)
|
646 |
+
timeline_data = extract_timeline(clean_text(raw_text))
|
647 |
+
emb_text = prepare_text_for_embedding(summary_dict, timeline_data)
|
648 |
+
|
649 |
+
# overwrite context
|
650 |
+
st.session_state.document_context = emb_text
|
651 |
+
st.session_state.processed = True
|
652 |
+
|
653 |
+
# produce your initial summary
|
654 |
+
role_prompt = (
|
655 |
+
f"As a {user_role}, summarize the document focusing on facts, "
|
656 |
+
"arguments, judgments, plus timeline of events."
|
657 |
+
)
|
658 |
+
initial_summary = rag_query_response(role_prompt, emb_text)
|
659 |
+
|
660 |
+
st.session_state.messages.append({"role":"user", "content":"📥 Document ingested"})
|
661 |
+
st.session_state.messages.append({"role":"assistant","content":initial_summary})
|
662 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
663 |
+
display_with_typing_effect(initial_summary)
|
664 |
+
|
665 |
+
st.info(f"⏱️ Summary generated in {round((time.time()-start_time)/60,2)} minutes")
|
666 |
+
save_chat_history(st.session_state.messages)
|
667 |
+
|
668 |
+
|
669 |
+
# --- 2) SHORT prompts are queries against the last context ---
|
670 |
+
elif word_count <= 30 and st.session_state.processed:
|
671 |
+
answer = rag_query_response(prompt, st.session_state.document_context)
|
672 |
+
st.session_state.messages.append({"role":"user", "content":prompt})
|
673 |
+
st.session_state.messages.append({"role":"assistant", "content":answer})
|
674 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
675 |
+
display_with_typing_effect(answer)
|
676 |
+
save_chat_history(st.session_state.messages)
|
677 |
+
|
678 |
+
# --- 3) anything else: ask them to paste something first ---
|
679 |
+
else:
|
680 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
681 |
+
st.markdown("❗ Paste at least 30 words of your document to ingest it first.")
|
682 |
+
|
683 |
+
|
684 |
+
|
685 |
+
######################################################################################################################### --- Evaluation Code Starts Here ---
|
686 |
+
|
687 |
+
import evaluate
|
688 |
+
|
689 |
+
# Load evaluators
|
690 |
+
rouge = evaluate.load("rouge")
|
691 |
+
bertscore = evaluate.load("bertscore")
|
692 |
+
|
693 |
+
|
694 |
+
def evaluate_summary(generated_summary, ground_truth_summary):
|
695 |
+
"""Evaluate model-generated summary against ground truth."""
|
696 |
+
# Compute ROUGE
|
697 |
+
rouge_result = rouge.compute(predictions=[generated_summary], references=[ground_truth_summary])
|
698 |
+
|
699 |
+
# Compute BERTScore
|
700 |
+
bert_result = bertscore.compute(predictions=[generated_summary], references=[ground_truth_summary], lang="en")
|
701 |
+
|
702 |
+
return rouge_result, bert_result
|
703 |
+
|
704 |
+
|
705 |
+
# 🛑 Upload ground truth (fix file uploader text)
|
706 |
+
ground_truth_summary_file = st.file_uploader("📄 Upload Ground Truth Summary (.txt)", type=["txt"])
|
707 |
+
|
708 |
+
if ground_truth_summary_file:
|
709 |
+
ground_truth_summary = ground_truth_summary_file.read().decode("utf-8").strip()
|
710 |
+
|
711 |
+
# ⚡ Make sure you have generated_summary available
|
712 |
+
if "generated_summary" in st.session_state and st.session_state.generated_summary:
|
713 |
+
|
714 |
+
# Perform evaluation
|
715 |
+
rouge_result, bert_result = evaluate_summary(st.session_state.generated_summary, ground_truth_summary)
|
716 |
+
|
717 |
+
# Display Results
|
718 |
+
st.subheader("📊 Evaluation Results")
|
719 |
+
|
720 |
+
st.write("🔹 ROUGE Scores:")
|
721 |
+
st.json(rouge_result)
|
722 |
+
|
723 |
+
st.write("🔹 BERTScore:")
|
724 |
+
st.json(bert_result)
|
725 |
+
|
726 |
+
else:
|
727 |
+
st.warning("")
|
728 |
+
|
729 |
+
|
730 |
+
|
731 |
+
|
732 |
+
|
733 |
+
######################################################################################################################
|
734 |
+
|
735 |
+
|
736 |
+
# Run this along with streamlit run app.py to evaluate the model's performance on a test set
|
737 |
+
# Otherwise, comment the below code
|
738 |
+
|
739 |
+
# ⇒ EVALUATION HOOK: after the very first summary, fire off evaluate.main() once
|
740 |
+
|
741 |
+
# import json
|
742 |
+
# import pandas as pd
|
743 |
+
# import threading
|
744 |
+
#
|
745 |
+
#
|
746 |
+
# def run_eval(doc_context):
|
747 |
+
#
|
748 |
+
# with open("test_case2.json", "r", encoding="utf-8") as f:
|
749 |
+
# gt_data = json.load(f)
|
750 |
+
#
|
751 |
+
# # 2) map document_id → local file
|
752 |
+
# doc_paths = {
|
753 |
+
# "case2": "case2.pdf",
|
754 |
+
# # add more if you have more documents
|
755 |
+
# }
|
756 |
+
#
|
757 |
+
# records = []
|
758 |
+
# for entry in gt_data:
|
759 |
+
# doc_id = entry["document_id"]
|
760 |
+
# query = entry["query"]
|
761 |
+
# gt_ans = entry["ground_truth_answer"]
|
762 |
+
#
|
763 |
+
#
|
764 |
+
# # model_ans = rag_query_response(query, emb_text)
|
765 |
+
# model_ans = rag_query_response(query, doc_context)
|
766 |
+
#
|
767 |
+
# records.append({
|
768 |
+
# "document_id": doc_id,
|
769 |
+
# "query": query,
|
770 |
+
# "ground_truth_answer": gt_ans,
|
771 |
+
# "model_answer": model_ans
|
772 |
+
# })
|
773 |
+
# print(f"✅ Done {doc_id} / “{query}”")
|
774 |
+
#
|
775 |
+
# # 3) push to DataFrame + CSV
|
776 |
+
# df = pd.DataFrame(records)
|
777 |
+
# out = "evaluation_results.csv"
|
778 |
+
# df.to_csv(out, index=False, encoding="utf-8")
|
779 |
+
# print(f"\n📝 Saved {len(df)} rows to {out}")
|
780 |
+
#
|
781 |
+
#
|
782 |
+
# # you could log this somewhere
|
783 |
+
# def _run_evaluation():
|
784 |
+
# try:
|
785 |
+
# run_eval()
|
786 |
+
# except Exception as e:
|
787 |
+
# print("‼️ Evaluation script error:", e)
|
788 |
+
#
|
789 |
+
# if st.session_state.processed and not st.session_state.get("evaluation_launched", False):
|
790 |
+
# st.session_state.evaluation_launched = True
|
791 |
+
#
|
792 |
+
# # inform user
|
793 |
+
# st.sidebar.info("🔬 Starting background evaluation run…")
|
794 |
+
#
|
795 |
+
# # *capture* the context
|
796 |
+
# doc_ctx = st.session_state.document_context
|
797 |
+
#
|
798 |
+
# # spawn the thread, passing doc_ctx in
|
799 |
+
# threading.Thread(
|
800 |
+
# target=lambda: run_eval(doc_ctx),
|
801 |
+
# daemon=True
|
802 |
+
# ).start()
|
803 |
+
#
|
804 |
+
# st.sidebar.success("✅ Evaluation launched — check evaluation_results.csv when done.")
|
805 |
+
#
|
806 |
+
# # check for file existence & show download button
|
807 |
+
# eval_path = os.path.abspath("evaluation_results.csv")
|
808 |
+
# if os.path.exists(eval_path):
|
809 |
+
# st.sidebar.success(f"✅ Results saved to:\n`{eval_path}`")
|
810 |
+
# # load it into a small dataframe (optional)
|
811 |
+
# df_eval = pd.read_csv(eval_path)
|
812 |
+
# # add a download button
|
813 |
+
# st.sidebar.download_button(
|
814 |
+
# label="⬇️ Download evaluation_results.csv",
|
815 |
+
# data=df_eval.to_csv(index=False).encode("utf-8"),
|
816 |
+
# file_name="evaluation_results.csv",
|
817 |
+
# mime="text/csv"
|
818 |
+
# )
|
819 |
+
# else:
|
820 |
+
# # if you want, display the cwd so you can inspect it
|
821 |
+
# st.sidebar.info(f"Current working dir:\n`{os.getcwd()}`")
|
822 |
+
#
|
823 |
+
#
|
stage_4.py
DELETED
@@ -1,449 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import shelve
|
3 |
-
import docx2txt
|
4 |
-
import PyPDF2
|
5 |
-
import time # Used to simulate typing effect
|
6 |
-
import nltk
|
7 |
-
import re
|
8 |
-
import os
|
9 |
-
import time # already imported in your code
|
10 |
-
import requests
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import torch
|
13 |
-
from sentence_transformers import SentenceTransformer, util
|
14 |
-
nltk.download('punkt')
|
15 |
-
import hashlib
|
16 |
-
from nltk import sent_tokenize
|
17 |
-
nltk.download('punkt_tab')
|
18 |
-
from transformers import LEDTokenizer, LEDForConditionalGeneration
|
19 |
-
from transformers import pipeline
|
20 |
-
import asyncio
|
21 |
-
import sys
|
22 |
-
# Fix for RuntimeError: no running event loop on Windows
|
23 |
-
if sys.platform.startswith("win"):
|
24 |
-
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
25 |
-
|
26 |
-
|
27 |
-
st.set_page_config(page_title="Legal Document Summarizer", layout="wide")
|
28 |
-
|
29 |
-
st.title("📄 Legal Document Summarizer (stage 4 )")
|
30 |
-
|
31 |
-
USER_AVATAR = "👤"
|
32 |
-
BOT_AVATAR = "🤖"
|
33 |
-
|
34 |
-
# Load chat history
|
35 |
-
def load_chat_history():
|
36 |
-
with shelve.open("chat_history") as db:
|
37 |
-
return db.get("messages", [])
|
38 |
-
|
39 |
-
# Save chat history
|
40 |
-
def save_chat_history(messages):
|
41 |
-
with shelve.open("chat_history") as db:
|
42 |
-
db["messages"] = messages
|
43 |
-
|
44 |
-
# Function to limit text preview to 500 words
|
45 |
-
def limit_text(text, word_limit=500):
|
46 |
-
words = text.split()
|
47 |
-
return " ".join(words[:word_limit]) + ("..." if len(words) > word_limit else "")
|
48 |
-
|
49 |
-
|
50 |
-
# CLEAN AND NORMALIZE TEXT
|
51 |
-
|
52 |
-
|
53 |
-
def clean_text(text):
|
54 |
-
# Remove newlines and extra spaces
|
55 |
-
text = text.replace('\r\n', ' ').replace('\n', ' ')
|
56 |
-
text = re.sub(r'\s+', ' ', text)
|
57 |
-
|
58 |
-
# Remove page number markers like "Page 1 of 10"
|
59 |
-
text = re.sub(r'Page\s+\d+\s+of\s+\d+', '', text, flags=re.IGNORECASE)
|
60 |
-
|
61 |
-
# Remove long dashed or underscored lines
|
62 |
-
text = re.sub(r'[_]{5,}', '', text) # Lines with underscores: _____
|
63 |
-
text = re.sub(r'[-]{5,}', '', text) # Lines with hyphens: -----
|
64 |
-
|
65 |
-
# Remove long dotted separators
|
66 |
-
text = re.sub(r'[.]{4,}', '', text) # Dots like "......" or ".............."
|
67 |
-
|
68 |
-
# Trim final leading/trailing whitespace
|
69 |
-
text = text.strip()
|
70 |
-
|
71 |
-
return text
|
72 |
-
|
73 |
-
|
74 |
-
#######################################################################################################################
|
75 |
-
|
76 |
-
|
77 |
-
# LOADING MODELS FOR DIVIDING TEXT INTO SECTIONS
|
78 |
-
|
79 |
-
# Load token from .env file
|
80 |
-
load_dotenv()
|
81 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
82 |
-
|
83 |
-
|
84 |
-
# Load once at the top (cache for performance)
|
85 |
-
@st.cache_resource
|
86 |
-
def load_local_zero_shot_classifier():
|
87 |
-
return pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
88 |
-
|
89 |
-
local_classifier = load_local_zero_shot_classifier()
|
90 |
-
|
91 |
-
|
92 |
-
SECTION_LABELS = ["Facts", "Arguments", "Judgment", "Other"]
|
93 |
-
|
94 |
-
def classify_chunk(text):
|
95 |
-
result = local_classifier(text, candidate_labels=SECTION_LABELS)
|
96 |
-
return result["labels"][0]
|
97 |
-
|
98 |
-
|
99 |
-
# NEW: NLP-based sectioning using zero-shot classification
|
100 |
-
def section_by_zero_shot(text):
|
101 |
-
sections = {"Facts": "", "Arguments": "", "Judgment": "", "Other": ""}
|
102 |
-
sentences = sent_tokenize(text)
|
103 |
-
chunk = ""
|
104 |
-
|
105 |
-
for i, sent in enumerate(sentences):
|
106 |
-
chunk += sent + " "
|
107 |
-
if (i + 1) % 3 == 0 or i == len(sentences) - 1:
|
108 |
-
label = classify_chunk(chunk.strip())
|
109 |
-
print(f"🔎 Chunk: {chunk[:60]}...\n🔖 Predicted Label: {label}")
|
110 |
-
# 👇 Normalize label (title case and fallback)
|
111 |
-
label = label.capitalize()
|
112 |
-
if label not in sections:
|
113 |
-
label = "Other"
|
114 |
-
sections[label] += chunk + "\n"
|
115 |
-
chunk = ""
|
116 |
-
|
117 |
-
return sections
|
118 |
-
|
119 |
-
#######################################################################################################################
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
# EXTRACTING TEXT FROM UPLOADED FILES
|
124 |
-
|
125 |
-
# Function to extract text from uploaded file
|
126 |
-
def extract_text(file):
|
127 |
-
if file.name.endswith(".pdf"):
|
128 |
-
reader = PyPDF2.PdfReader(file)
|
129 |
-
full_text = "\n".join(page.extract_text() or "" for page in reader.pages)
|
130 |
-
elif file.name.endswith(".docx"):
|
131 |
-
full_text = docx2txt.process(file)
|
132 |
-
elif file.name.endswith(".txt"):
|
133 |
-
full_text = file.read().decode("utf-8")
|
134 |
-
else:
|
135 |
-
return "Unsupported file type."
|
136 |
-
|
137 |
-
return full_text # Full text is needed for summarization
|
138 |
-
|
139 |
-
|
140 |
-
#######################################################################################################################
|
141 |
-
|
142 |
-
# EXTRACTIVE AND ABSTRACTIVE SUMMARIZATION
|
143 |
-
|
144 |
-
|
145 |
-
@st.cache_resource
|
146 |
-
def load_legalbert():
|
147 |
-
return SentenceTransformer("nlpaueb/legal-bert-base-uncased")
|
148 |
-
|
149 |
-
|
150 |
-
legalbert_model = load_legalbert()
|
151 |
-
|
152 |
-
@st.cache_resource
|
153 |
-
def load_led():
|
154 |
-
tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
|
155 |
-
model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
|
156 |
-
return tokenizer, model
|
157 |
-
|
158 |
-
tokenizer_led, model_led = load_led()
|
159 |
-
|
160 |
-
|
161 |
-
def legalbert_extractive_summary(text, top_ratio=0.2):
|
162 |
-
sentences = sent_tokenize(text)
|
163 |
-
top_k = max(3, int(len(sentences) * top_ratio))
|
164 |
-
|
165 |
-
if len(sentences) <= top_k:
|
166 |
-
return text
|
167 |
-
|
168 |
-
# Embeddings & scoring
|
169 |
-
sentence_embeddings = legalbert_model.encode(sentences, convert_to_tensor=True)
|
170 |
-
doc_embedding = torch.mean(sentence_embeddings, dim=0)
|
171 |
-
cosine_scores = util.pytorch_cos_sim(doc_embedding, sentence_embeddings)[0]
|
172 |
-
top_results = torch.topk(cosine_scores, k=top_k)
|
173 |
-
|
174 |
-
# Preserve original order
|
175 |
-
selected_sentences = [sentences[i] for i in sorted(top_results.indices.tolist())]
|
176 |
-
return " ".join(selected_sentences)
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
# Add LED Abstractive Summarization
|
181 |
-
|
182 |
-
|
183 |
-
def led_abstractive_summary(text, max_length=512, min_length=100):
|
184 |
-
inputs = tokenizer_led(
|
185 |
-
text, return_tensors="pt", padding="max_length",
|
186 |
-
truncation=True, max_length=4096
|
187 |
-
)
|
188 |
-
global_attention_mask = torch.zeros_like(inputs["input_ids"])
|
189 |
-
global_attention_mask[:, 0] = 1
|
190 |
-
|
191 |
-
outputs = model_led.generate(
|
192 |
-
inputs["input_ids"],
|
193 |
-
attention_mask=inputs["attention_mask"],
|
194 |
-
global_attention_mask=global_attention_mask,
|
195 |
-
max_length=max_length,
|
196 |
-
min_length=min_length,
|
197 |
-
num_beams=4, # Use beam search
|
198 |
-
repetition_penalty=2.0, # Penalize repetition
|
199 |
-
length_penalty=1.0,
|
200 |
-
early_stopping=True,
|
201 |
-
no_repeat_ngram_size=4 # Prevent repeated phrases
|
202 |
-
)
|
203 |
-
|
204 |
-
return tokenizer_led.decode(outputs[0], skip_special_tokens=True)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
def led_abstractive_summary_chunked(text, max_tokens=3000):
|
209 |
-
sentences = sent_tokenize(text)
|
210 |
-
current_chunk = ""
|
211 |
-
chunks = []
|
212 |
-
for sent in sentences:
|
213 |
-
if len(tokenizer_led(current_chunk + sent)["input_ids"]) > max_tokens:
|
214 |
-
chunks.append(current_chunk)
|
215 |
-
current_chunk = sent
|
216 |
-
else:
|
217 |
-
current_chunk += " " + sent
|
218 |
-
if current_chunk:
|
219 |
-
chunks.append(current_chunk)
|
220 |
-
|
221 |
-
summaries = []
|
222 |
-
for chunk in chunks:
|
223 |
-
summaries.append(led_abstractive_summary(chunk)) # Call your LED summary function here
|
224 |
-
|
225 |
-
return " ".join(summaries)
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
def hybrid_summary_hierarchical(text, top_ratio=0.8):
|
230 |
-
cleaned_text = clean_text(text)
|
231 |
-
sections = section_by_zero_shot(cleaned_text)
|
232 |
-
|
233 |
-
structured_summary = {} # <-- hierarchical summary here
|
234 |
-
|
235 |
-
for name, content in sections.items():
|
236 |
-
if content.strip():
|
237 |
-
# Extractive summary
|
238 |
-
extractive = legalbert_extractive_summary(content, top_ratio)
|
239 |
-
|
240 |
-
# Abstractive summary
|
241 |
-
abstractive = led_abstractive_summary_chunked(extractive)
|
242 |
-
|
243 |
-
# Store in dictionary (hierarchical structure)
|
244 |
-
structured_summary[name] = {
|
245 |
-
"extractive": extractive,
|
246 |
-
"abstractive": abstractive
|
247 |
-
}
|
248 |
-
|
249 |
-
return structured_summary
|
250 |
-
|
251 |
-
|
252 |
-
#######################################################################################################################
|
253 |
-
|
254 |
-
|
255 |
-
# STREAMLIT APP INTERFACE CODE
|
256 |
-
|
257 |
-
# Initialize or load chat history
|
258 |
-
if "messages" not in st.session_state:
|
259 |
-
st.session_state.messages = load_chat_history()
|
260 |
-
|
261 |
-
# Initialize last_uploaded if not set
|
262 |
-
if "last_uploaded" not in st.session_state:
|
263 |
-
st.session_state.last_uploaded = None
|
264 |
-
|
265 |
-
# Sidebar with a button to delete chat history
|
266 |
-
with st.sidebar:
|
267 |
-
st.subheader("⚙️ Options")
|
268 |
-
if st.button("Delete Chat History"):
|
269 |
-
st.session_state.messages = []
|
270 |
-
st.session_state.last_uploaded = None
|
271 |
-
save_chat_history([])
|
272 |
-
|
273 |
-
# Display chat messages with a typing effect
|
274 |
-
def display_with_typing_effect(text, speed=0.005):
|
275 |
-
placeholder = st.empty()
|
276 |
-
displayed_text = ""
|
277 |
-
for char in text:
|
278 |
-
displayed_text += char
|
279 |
-
placeholder.markdown(displayed_text)
|
280 |
-
time.sleep(speed)
|
281 |
-
return displayed_text
|
282 |
-
|
283 |
-
# Show existing chat messages
|
284 |
-
for message in st.session_state.messages:
|
285 |
-
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
|
286 |
-
with st.chat_message(message["role"], avatar=avatar):
|
287 |
-
st.markdown(message["content"])
|
288 |
-
|
289 |
-
|
290 |
-
# Standard chat input field
|
291 |
-
prompt = st.chat_input("Type a message...")
|
292 |
-
|
293 |
-
|
294 |
-
# Place uploader before the chat so it's always visible
|
295 |
-
with st.container():
|
296 |
-
st.subheader("📎 Upload a Legal Document")
|
297 |
-
uploaded_file = st.file_uploader("Upload a file (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
|
298 |
-
reprocess_btn = st.button("🔄 Reprocess Last Uploaded File")
|
299 |
-
|
300 |
-
|
301 |
-
# Hashing logic
|
302 |
-
def get_file_hash(file):
|
303 |
-
file.seek(0)
|
304 |
-
content = file.read()
|
305 |
-
file.seek(0)
|
306 |
-
return hashlib.md5(content).hexdigest()
|
307 |
-
|
308 |
-
|
309 |
-
##############################################################################################################
|
310 |
-
|
311 |
-
user_role = st.sidebar.selectbox(
|
312 |
-
"🎭 Select Your Role for Custom Summary",
|
313 |
-
["General", "Judge", "Lawyer", "Student"]
|
314 |
-
)
|
315 |
-
|
316 |
-
|
317 |
-
def role_based_filter(section, summary, role):
|
318 |
-
if role == "General":
|
319 |
-
return summary
|
320 |
-
|
321 |
-
filtered_summary = {
|
322 |
-
"extractive": "",
|
323 |
-
"abstractive": ""
|
324 |
-
}
|
325 |
-
|
326 |
-
if role == "Judge" and section in ["Judgment", "Facts"]:
|
327 |
-
filtered_summary = summary
|
328 |
-
elif role == "Lawyer" and section in ["Arguments", "Facts"]:
|
329 |
-
filtered_summary = summary
|
330 |
-
elif role == "Student" and section in ["Facts"]:
|
331 |
-
filtered_summary = summary
|
332 |
-
|
333 |
-
return filtered_summary
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
if uploaded_file:
|
338 |
-
file_hash = get_file_hash(uploaded_file)
|
339 |
-
|
340 |
-
# Check if file is new OR reprocess is triggered
|
341 |
-
if file_hash != st.session_state.get("last_uploaded_hash") or reprocess_btn:
|
342 |
-
|
343 |
-
start_time = time.time() # Start the timer
|
344 |
-
|
345 |
-
raw_text = extract_text(uploaded_file)
|
346 |
-
|
347 |
-
summary_dict = hybrid_summary_hierarchical(raw_text)
|
348 |
-
|
349 |
-
st.session_state.messages.append({
|
350 |
-
"role": "user",
|
351 |
-
"content": f"📤 Uploaded **{uploaded_file.name}**"
|
352 |
-
})
|
353 |
-
|
354 |
-
|
355 |
-
# Start building preview
|
356 |
-
preview_text = f"🧾 **Hybrid Summary of {uploaded_file.name}:**\n\n"
|
357 |
-
|
358 |
-
|
359 |
-
for section in ["Facts", "Arguments", "Judgment", "Other"]:
|
360 |
-
if section in summary_dict:
|
361 |
-
|
362 |
-
filtered = role_based_filter(section, summary_dict[section], user_role)
|
363 |
-
|
364 |
-
extractive = filtered.get("extractive", "").strip()
|
365 |
-
abstractive = filtered.get("abstractive", "").strip()
|
366 |
-
|
367 |
-
if not extractive and not abstractive:
|
368 |
-
continue # Skip if empty after filtering
|
369 |
-
|
370 |
-
preview_text += f"### 📘 {section} Section\n"
|
371 |
-
preview_text += f"📌 **Extractive Summary:**\n{extractive if extractive else '_No content extracted._'}\n\n"
|
372 |
-
preview_text += f"🔍 **Abstractive Summary:**\n{abstractive if abstractive else '_No summary generated._'}\n\n"
|
373 |
-
|
374 |
-
|
375 |
-
# Display in chat
|
376 |
-
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
377 |
-
display_with_typing_effect(clean_text(preview_text), speed=0)
|
378 |
-
|
379 |
-
# Show processing time after the summary
|
380 |
-
processing_time = round(time.time() - start_time, 2)
|
381 |
-
st.session_state["last_response_time"] = processing_time
|
382 |
-
|
383 |
-
if "last_response_time" in st.session_state:
|
384 |
-
st.info(f"⏱️ Response generated in **{st.session_state['last_response_time']} seconds**.")
|
385 |
-
|
386 |
-
st.session_state.messages.append({
|
387 |
-
"role": "assistant",
|
388 |
-
"content": clean_text(preview_text)
|
389 |
-
})
|
390 |
-
|
391 |
-
# Save this file hash only if it’s a new upload (avoid overwriting during reprocess)
|
392 |
-
if not reprocess_btn:
|
393 |
-
st.session_state.last_uploaded_hash = file_hash
|
394 |
-
|
395 |
-
save_chat_history(st.session_state.messages)
|
396 |
-
|
397 |
-
st.rerun()
|
398 |
-
|
399 |
-
|
400 |
-
# Handle chat input and return hybrid summary
|
401 |
-
if prompt:
|
402 |
-
raw_text = prompt
|
403 |
-
start_time = time.time()
|
404 |
-
|
405 |
-
summary_dict = hybrid_summary_hierarchical(raw_text)
|
406 |
-
|
407 |
-
st.session_state.messages.append({
|
408 |
-
"role": "user",
|
409 |
-
"content": prompt
|
410 |
-
})
|
411 |
-
|
412 |
-
# Start building preview
|
413 |
-
preview_text = f"🧾 **Hybrid Summary of {uploaded_file.name}:**\n\n"
|
414 |
-
|
415 |
-
for section in ["Facts", "Arguments", "Judgment", "Other"]:
|
416 |
-
if section in summary_dict:
|
417 |
-
|
418 |
-
filtered = role_based_filter(section, summary_dict[section], user_role)
|
419 |
-
|
420 |
-
extractive = filtered.get("extractive", "").strip()
|
421 |
-
abstractive = filtered.get("abstractive", "").strip()
|
422 |
-
|
423 |
-
if not extractive and not abstractive:
|
424 |
-
continue # Skip if empty after filtering
|
425 |
-
|
426 |
-
preview_text += f"### 📘 {section} Section\n"
|
427 |
-
preview_text += f"📌 **Extractive Summary:**\n{extractive if extractive else '_No content extracted._'}\n\n"
|
428 |
-
preview_text += f"🔍 **Abstractive Summary:**\n{abstractive if abstractive else '_No summary generated._'}\n\n"
|
429 |
-
|
430 |
-
|
431 |
-
# Display in chat
|
432 |
-
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
433 |
-
display_with_typing_effect(clean_text(preview_text), speed=0)
|
434 |
-
|
435 |
-
# Show processing time after the summary
|
436 |
-
processing_time = round(time.time() - start_time, 2)
|
437 |
-
st.session_state["last_response_time"] = processing_time
|
438 |
-
|
439 |
-
if "last_response_time" in st.session_state:
|
440 |
-
st.info(f"⏱️ Response generated in **{st.session_state['last_response_time']} seconds**.")
|
441 |
-
|
442 |
-
st.session_state.messages.append({
|
443 |
-
"role": "assistant",
|
444 |
-
"content": clean_text(preview_text)
|
445 |
-
})
|
446 |
-
|
447 |
-
save_chat_history(st.session_state.messages)
|
448 |
-
|
449 |
-
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|