File size: 6,575 Bytes
6f5ce4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import logging
from config import SHARE_GRADIO_WITH_PUBLIC_URL
from chains import qa_chain, summarization_chain
logger = logging.getLogger(__name__)
# Translation dictionary
TRANSLATIONS = {
"en": {
"title": "# 📚 Study Buddy: AI Learning Assistant",
"subtitle": "## 🤖 A smart, user-friendly chatbot for students!",
"summary_subtitle": "## 📄 Upload Notes for Summarization",
"chat_input_label": "Type your question here:",
"chat_placeholder": "e.g., Explain Newton's laws",
"chat_button_label": "Get Answer",
"summary_button_label": "Summarize Notes",
"upload_file_label": "Upload .txt or .pdf file",
"summary_output_label": "Summary",
"language_label": "Language / Langue",
"ai_response_label": "AI Response"
},
"fr": {
"title": "# 📚 Study Buddy: Assistant d'apprentissage IA",
"subtitle": "## 🤖 Un chatbot intelligent et convivial pour les étudiants!",
"summary_subtitle": "## 📄 Subir notas para resumir",
"chat_input_label": "Tapez votre question ici:",
"chat_placeholder": "ex : Expliquez les lois de Newton",
"chat_button_label": "Obtenir une réponse",
"summary_button_label": "Résumer les notes",
"upload_file_label": "Téléchargez un fichier .txt ou .pdf",
"summary_output_label": "Résumé",
"language_label": "Langue / Language",
"ai_response_label": "Réponse de l'IA"
}
}
# Function to process user queries
def chatbot_response(user_input, lang):
try:
response = qa_chain.invoke({"question": user_input})
logger.info("chatbot_response completed")
return response
except Exception as e:
msg = f"Error : {e}"
logger.exception(msg)
return TRANSLATIONS[lang].get("error_message", "Sorry, an error occurred while processing your request.")
# Function to summarize notes
def summarize_text(text, lang):
try:
summary = summarization_chain.invoke({"document_text": text})
logger.info("summarize_text completed")
return summary
except Exception as e:
msg = f"Error : {e}"
logger.exception(msg)
return TRANSLATIONS[lang].get("error_message", "Sorry, an error occurred while summarizing your notes.")
# Function to update UI labels dynamically
def update_language(lang):
return (
TRANSLATIONS[lang]["title"],
TRANSLATIONS[lang]["subtitle"],
TRANSLATIONS[lang]["chat_input_label"],
TRANSLATIONS[lang]["chat_placeholder"],
TRANSLATIONS[lang]["chat_button_label"],
TRANSLATIONS[lang]["upload_file_label"],
TRANSLATIONS[lang]["summary_button_label"],
TRANSLATIONS[lang]["summary_output_label"],
TRANSLATIONS[lang]["ai_response_label"]
)
# Gradio UI
def create_interface():
with gr.Blocks(css="body { font-family: sans-serif; background-color: #f9f9f9; }") as study_buddy:
# Default to English
lang = "en"
title = gr.Markdown(f"{TRANSLATIONS[lang]['title']}")
with gr.Row():
with gr.Column():
gr.Markdown("", height=4)
language = gr.Radio(
choices=["en", "fr"],
value=lang,
label=TRANSLATIONS[lang]["language_label"]
)
gr.Markdown("", height=4)
subtitle = gr.Markdown(f"{TRANSLATIONS[lang]['subtitle']}")
chat_input = gr.Textbox(
label=TRANSLATIONS[lang]["chat_input_label"],
lines=4,
placeholder=TRANSLATIONS[lang]["chat_placeholder"]
)
with gr.Column():
gr.Markdown("", height=4)
summary_subtitle = gr.Markdown(f"{TRANSLATIONS[lang]['summary_subtitle']}")
file_input = gr.File(file_types=[".pdf", ".txt"])
file_label = gr.Markdown(TRANSLATIONS[lang]["upload_file_label"]) # Separate label
with gr.Row():
with gr.Column():
chat_button = gr.Button(TRANSLATIONS[lang]["chat_button_label"], variant="primary")
chat_output = gr.Textbox(label=TRANSLATIONS[lang]["ai_response_label"], lines=5, interactive=True)
# Bind chatbot response function
chat_button.click(
chatbot_response,
inputs=[chat_input, language],
outputs=chat_output
)
with gr.Column():
summary_button = gr.Button(TRANSLATIONS[lang]["summary_button_label"], variant="primary")
summary_output = gr.Textbox(label=TRANSLATIONS[lang]["summary_output_label"], lines=5, interactive=True)
# Bind summarization function
summary_button.click(
summarize_text,
inputs=[file_input, language],
outputs=summary_output
)
# Update labels dynamically when the language changes
def update_labels(lang):
return (
TRANSLATIONS[lang]["title"],
TRANSLATIONS[lang]["subtitle"],
TRANSLATIONS[lang]["summary_subtitle"],
TRANSLATIONS[lang]["chat_input_label"],
TRANSLATIONS[lang]["chat_placeholder"],
TRANSLATIONS[lang]["chat_button_label"],
TRANSLATIONS[lang]["summary_button_label"],
TRANSLATIONS[lang]["summary_output_label"],
TRANSLATIONS[lang]["ai_response_label"],
TRANSLATIONS[lang]["upload_file_label"]
)
language.change(
update_labels,
inputs=[language],
outputs=[
title, subtitle, summary_subtitle,
chat_input, chat_input,
chat_button,
summary_button, summary_output, chat_output, file_label # Update file label separately
]
)
return study_buddy
if __name__ == "__main__":
study_buddy = create_interface()
study_buddy.launch(share=SHARE_GRADIO_WITH_PUBLIC_URL)
|