hunyuan-t commited on
Commit
a482122
·
verified ·
1 Parent(s): b6e3646

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -54
app.py CHANGED
@@ -1,64 +1,65 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
 
33
  stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from openai import OpenAI
3
+ import base64
4
 
5
+ # 初始化腾讯混元客户端(替换为你的API Key)
6
+ client = OpenAI(
7
+ api_key="HUNYUAN_API_KEY",
8
+ base_url="https://api.hunyuan.cloud.tencent.com/v1"
9
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ def generate_caption(image_path, question):
12
+ # 将图片转换为Base64
13
+ with open(image_path, "rb") as image_file:
14
+ base64_image = base64.b64encode(image_file.read()).decode('utf-8')
15
+
16
+ # 构建消息结构
17
+ messages = [{
18
+ "role": "user",
19
+ "content": [
20
+ {"type": "text", "text": question},
21
+ {
22
+ "type": "image_url",
23
+ "image_url": {
24
+ "url": f"data:image/jpeg;base64,{base64_image}"
25
+ }
26
+ }
27
+ ]
28
+ }]
29
 
30
+ # 调用混元视觉模型
31
+ response = client.chat.completions.create(
32
+ model="hunyuan-vision",
33
+ messages=messages,
34
  stream=True,
35
+ extra_body={
36
+ "stream_moderation": True,
37
+ "enable_enhancement": False
38
+ }
39
+ )
 
 
40
 
41
+ # 流式处理响应
42
+ full_response = ""
43
+ for chunk in response:
44
+ token = chunk.choices[0].delta.content
45
+ if token:
46
+ full_response += token
47
+ yield full_response
48
 
49
+ # 创建Gradio界面
50
+ with gr.Blocks(title="腾讯混元图生文Demo") as demo:
51
+ with gr.Row():
52
+ with gr.Column():
53
+ image_input = gr.Image(type="filepath", label="上传图片")
54
+ question_input = gr.Textbox(label="输入问题", value="请描述图片内容")
55
+ submit_btn = gr.Button("生成描述")
56
+ output = gr.Textbox(label="描述结果", interactive=False)
 
 
 
 
 
 
 
 
 
 
57
 
58
+ submit_btn.click(
59
+ fn=generate_caption,
60
+ inputs=[image_input, question_input],
61
+ outputs=output
62
+ )
63
 
64
  if __name__ == "__main__":
65
+ demo.launch(share=True)