File size: 36,601 Bytes
b870ebb
d58d621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b870ebb
 
 
 
 
 
 
 
d58d621
b870ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d58d621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b870ebb
d58d621
b870ebb
d58d621
07dae79
 
 
 
 
d58d621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dae79
 
d58d621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
from streamlit import session_state as session
import shutil

import os
import numpy as np
from sklearn import neighbors
from scipy.spatial import distance_matrix
from pygco import cut_from_graph
import streamlit_ext as ste
import open3d as o3d
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from stqdm import stqdm
import json
from stpyvista import stpyvista
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import streamlit as st
import pyvista as pv

from PIL import Image

class TeethApp:
    def __init__(self):
        # Font
        with open("utils/style.css") as css:
            st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)

        # Logo
        self.image_path = "utils/teeth-295404_1280.png"
        self.image = Image.open(self.image_path)
        width, height = self.image.size
        scale = 12
        new_width, new_height = width / scale, height / scale
        self.image = self.image.resize((int(new_width), int(new_height)))

        # Streamlit side navigation bar
        st.sidebar.markdown("# AI ToothSeg")
        st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
        st.sidebar.markdown(" ")
        st.sidebar.image(self.image, use_column_width=False)
        st.markdown(
            """
                <style>
                .css-1bxukto {
                background-color: rgb(255, 255, 255) ;""",
            unsafe_allow_html=True,
        )


class STN3d(nn.Module):
    def __init__(self, channel):
        super(STN3d, self).__init__()
        self.conv1 = torch.nn.Conv1d(channel, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 9)
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)

        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        iden = Variable(torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32))).view(1, 9).repeat(
            batchsize, 1)
        if x.is_cuda:
            iden = iden.to(x.get_device())
        x = x + iden
        x = x.view(-1, 3, 3)
        return x

class STNkd(nn.Module):
    def __init__(self, k=64):
        super(STNkd, self).__init__()
        self.conv1 = torch.nn.Conv1d(k, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 512, 1)
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, k * k)
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(512)
        self.bn4 = nn.BatchNorm1d(256)
        self.bn5 = nn.BatchNorm1d(128)

        self.k = k

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 512)

        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k * self.k).repeat(
            batchsize, 1)
        if x.is_cuda:
            iden = iden.to(x.get_device())
        x = x + iden
        x = x.view(-1, self.k, self.k)
        return x

class MeshSegNet(nn.Module):
    def __init__(self, num_classes=17, num_channels=15, with_dropout=True, dropout_p=0.5):
        super(MeshSegNet, self).__init__()
        self.num_classes = num_classes
        self.num_channels = num_channels
        self.with_dropout = with_dropout
        self.dropout_p = dropout_p

        # MLP-1 [64, 64]
        self.mlp1_conv1 = torch.nn.Conv1d(self.num_channels, 64, 1)
        self.mlp1_conv2 = torch.nn.Conv1d(64, 64, 1)
        self.mlp1_bn1 = nn.BatchNorm1d(64)
        self.mlp1_bn2 = nn.BatchNorm1d(64)
        # FTM (feature-transformer module)
        self.fstn = STNkd(k=64)
        # GLM-1 (graph-contrained learning modulus)
        self.glm1_conv1_1 = torch.nn.Conv1d(64, 32, 1)
        self.glm1_conv1_2 = torch.nn.Conv1d(64, 32, 1)
        self.glm1_bn1_1 = nn.BatchNorm1d(32)
        self.glm1_bn1_2 = nn.BatchNorm1d(32)
        self.glm1_conv2 = torch.nn.Conv1d(32+32, 64, 1)
        self.glm1_bn2 = nn.BatchNorm1d(64)
        # MLP-2
        self.mlp2_conv1 = torch.nn.Conv1d(64, 64, 1)
        self.mlp2_bn1 = nn.BatchNorm1d(64)
        self.mlp2_conv2 = torch.nn.Conv1d(64, 128, 1)
        self.mlp2_bn2 = nn.BatchNorm1d(128)
        self.mlp2_conv3 = torch.nn.Conv1d(128, 512, 1)
        self.mlp2_bn3 = nn.BatchNorm1d(512)
        # GLM-2 (graph-contrained learning modulus)
        self.glm2_conv1_1 = torch.nn.Conv1d(512, 128, 1)
        self.glm2_conv1_2 = torch.nn.Conv1d(512, 128, 1)
        self.glm2_conv1_3 = torch.nn.Conv1d(512, 128, 1)
        self.glm2_bn1_1 = nn.BatchNorm1d(128)
        self.glm2_bn1_2 = nn.BatchNorm1d(128)
        self.glm2_bn1_3 = nn.BatchNorm1d(128)
        self.glm2_conv2 = torch.nn.Conv1d(128*3, 512, 1)
        self.glm2_bn2 = nn.BatchNorm1d(512)
        # MLP-3
        self.mlp3_conv1 = torch.nn.Conv1d(64+512+512+512, 256, 1)
        self.mlp3_conv2 = torch.nn.Conv1d(256, 256, 1)
        self.mlp3_bn1_1 = nn.BatchNorm1d(256)
        self.mlp3_bn1_2 = nn.BatchNorm1d(256)
        self.mlp3_conv3 = torch.nn.Conv1d(256, 128, 1)
        self.mlp3_conv4 = torch.nn.Conv1d(128, 128, 1)
        self.mlp3_bn2_1 = nn.BatchNorm1d(128)
        self.mlp3_bn2_2 = nn.BatchNorm1d(128)
        # output
        self.output_conv = torch.nn.Conv1d(128, self.num_classes, 1)
        if self.with_dropout:
            self.dropout = nn.Dropout(p=self.dropout_p)

    def forward(self, x, a_s, a_l):
        batchsize = x.size()[0]
        n_pts = x.size()[2]
        # MLP-1
        x = F.relu(self.mlp1_bn1(self.mlp1_conv1(x)))
        x = F.relu(self.mlp1_bn2(self.mlp1_conv2(x)))
        # FTM
        trans_feat = self.fstn(x)
        x = x.transpose(2, 1)
        x_ftm = torch.bmm(x, trans_feat)
        # GLM-1
        sap = torch.bmm(a_s, x_ftm)
        sap = sap.transpose(2, 1)
        x_ftm = x_ftm.transpose(2, 1)
        x = F.relu(self.glm1_bn1_1(self.glm1_conv1_1(x_ftm)))
        glm_1_sap = F.relu(self.glm1_bn1_2(self.glm1_conv1_2(sap)))
        x = torch.cat([x, glm_1_sap], dim=1)
        x = F.relu(self.glm1_bn2(self.glm1_conv2(x)))
        # MLP-2
        x = F.relu(self.mlp2_bn1(self.mlp2_conv1(x)))
        x = F.relu(self.mlp2_bn2(self.mlp2_conv2(x)))
        x_mlp2 = F.relu(self.mlp2_bn3(self.mlp2_conv3(x)))
        if self.with_dropout:
            x_mlp2 = self.dropout(x_mlp2)
        # GLM-2
        x_mlp2 = x_mlp2.transpose(2, 1)
        sap_1 = torch.bmm(a_s, x_mlp2)
        sap_2 = torch.bmm(a_l, x_mlp2)
        x_mlp2 = x_mlp2.transpose(2, 1)
        sap_1 = sap_1.transpose(2, 1)
        sap_2 = sap_2.transpose(2, 1)
        x = F.relu(self.glm2_bn1_1(self.glm2_conv1_1(x_mlp2)))
        glm_2_sap_1 = F.relu(self.glm2_bn1_2(self.glm2_conv1_2(sap_1)))
        glm_2_sap_2 = F.relu(self.glm2_bn1_3(self.glm2_conv1_3(sap_2)))
        x = torch.cat([x, glm_2_sap_1, glm_2_sap_2], dim=1)
        x_glm2 = F.relu(self.glm2_bn2(self.glm2_conv2(x)))
        # GMP
        x = torch.max(x_glm2, 2, keepdim=True)[0]
        # Upsample
        x = torch.nn.Upsample(n_pts)(x)
        # Dense fusion
        x = torch.cat([x, x_ftm, x_mlp2, x_glm2], dim=1)
        # MLP-3
        x = F.relu(self.mlp3_bn1_1(self.mlp3_conv1(x)))
        x = F.relu(self.mlp3_bn1_2(self.mlp3_conv2(x)))
        x = F.relu(self.mlp3_bn2_1(self.mlp3_conv3(x)))
        if self.with_dropout:
            x = self.dropout(x)
        x = F.relu(self.mlp3_bn2_2(self.mlp3_conv4(x)))
        # output
        x = self.output_conv(x)
        x = x.transpose(2,1).contiguous()
        x = torch.nn.Softmax(dim=-1)(x.view(-1, self.num_classes))
        x = x.view(batchsize, n_pts, self.num_classes)

        return x

def clone_runoob(li1):
    li_copy = li1[:]
    return li_copy

# 对离群点重新进行分类
def class_inlier_outlier(label_list, mean_points,cloud, ind, label_index, points, labels):
    label_change = clone_runoob(labels)
    outlier_index = clone_runoob(label_index)
    ind_reverse = clone_runoob(ind)
    # 得到离群点的label下标
    ind_reverse.reverse()
    for i in ind_reverse:
        outlier_index.pop(i)

    # 获取离群点
    inlier_cloud = cloud.select_by_index(ind)
    outlier_cloud = cloud.select_by_index(ind, invert=True)
    outlier_points = np.array(outlier_cloud.points)

    for i in range(len(outlier_points)):
        distance = []
        for j in range(len(mean_points)):
            dis = np.linalg.norm(outlier_points[i] - mean_points[j], ord=2)  # 计算tooth和GT质心之间的距离
            distance.append(dis)
        min_index = distance.index(min(distance))  # 获取和离群点质心最近label的index
        outlier_label = label_list[min_index]  # 获取离群点应该的label
        index = outlier_index[i]
        label_change[index] = outlier_label

    return label_change

# 利用knn算法消除离群点
def remove_outlier(points, labels):
    # points = np.array(point_cloud_o3d_orign.points)
    # global label_list
    same_label_points = {}

    same_label_index = {}

    mean_points = []  # 所有label种类对应点云的质心坐标

    label_list = []
    for i in range(len(labels)):
        label_list.append(labels[i])
    label_list = list(set(label_list))  # 去重获从小到大排序取GT_label=[0, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27]
    label_list.sort()
    label_list = label_list[1:]

    for i in label_list:
        key = i
        points_list = []
        all_label_index = []
        for j in range(len(labels)):
            if labels[j] == i:
                points_list.append(points[j].tolist())
                all_label_index.append(j)  # 得到label为 i 的点对应的label的下标
        same_label_points[key] = points_list
        same_label_index[key] = all_label_index

        tooth_mean = np.mean(points_list, axis=0)
        mean_points.append(tooth_mean)
        # print(mean_points)

    for i in label_list:
        points_array = same_label_points[i]
        # 建立一个o3d的点云对象
        pcd = o3d.geometry.PointCloud()
        # 使用Vector3dVector方法转换
        pcd.points = o3d.utility.Vector3dVector(points_array)

        # 对label i 对应的点云进行统计离群值去除,找出离群点并显示
        # 统计式离群点移除
        cl, ind = pcd.remove_statistical_outlier(nb_neighbors=200, std_ratio=2.0)  # cl是选中的点,ind是选中点index
        # 可视化
        # display_inlier_outlier(pcd, ind)

        # 对分出来的离群点重新分类
        label_index = same_label_index[i]
        labels = class_inlier_outlier(label_list, mean_points, pcd, ind, label_index, points, labels)
        # print(f"label_change{labels[4400]}")

    return labels


# 消除离群点,保存最后的输出
def remove_outlier_main(jaw, pcd_points, labels, instances_labels):
    # point_cloud_o3d_orign = o3d.io.read_point_cloud('E:/tooth/data/MeshSegNet-master/test_upsample_15/upsample_01K17AN8_upper_refined.pcd')
    # 原始点
    points = pcd_points.copy()
    label = remove_outlier(points, labels)

    # 保存json文件
    label_dict = {}
    label_dict["id_patient"] = ""
    label_dict["jaw"] = jaw
    label_dict["labels"] = label.tolist()
    label_dict["instances"] = instances_labels.tolist()
    b = json.dumps(label_dict)
    with open('dental-labels4' + '.json', 'w') as f_obj:
        f_obj.write(b)
    f_obj.close()


same_points_list = {}


# 体素下采样
def voxel_filter(point_cloud, leaf_size):
    same_points_list = {}
    filtered_points = []
    # step1 计算边界点
    x_max, y_max, z_max = np.amax(point_cloud, axis=0)  # 计算 x,y,z三个维度的最值
    x_min, y_min, z_min = np.amin(point_cloud, axis=0)

    # step2 确定体素的尺寸
    size_r = leaf_size

    # step3 计算每个 volex的维度 voxel grid
    Dx = (x_max - x_min) // size_r + 1
    Dy = (y_max - y_min) // size_r + 1
    Dz = (z_max - z_min) // size_r + 1

    # print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))

    # step4 计算每个点在volex grid内每一个维度的值
    h = list()  # h 为保存索引的列表
    for i in range(len(point_cloud)):
        hx = np.floor((point_cloud[i][0] - x_min) // size_r)
        hy = np.floor((point_cloud[i][1] - y_min) // size_r)
        hz = np.floor((point_cloud[i][2] - z_min) // size_r)
        h.append(hx + hy * Dx + hz * Dx * Dy)
    # print(h[60581])

    # step5 对h值进行排序
    h = np.array(h)
    h_indice = np.argsort(h)  # 提取索引,返回h里面的元素按从小到大排序的  索引
    h_sorted = h[h_indice]  # 升序
    count = 0  # 用于维度的累计
    step = 20
    # 将h值相同的点放入到同一个grid中,并进行筛选
    for i in range(1, len(h_sorted)):  # 0-19999个数据点
        # if i == len(h_sorted)-1:
        #     print("aaa")
        if h_sorted[i] == h_sorted[i - 1] and (i != len(h_sorted) - 1):
            continue
        elif h_sorted[i] == h_sorted[i - 1] and (i == len(h_sorted) - 1):
            point_idx = h_indice[count:]
            key = h_sorted[i - 1]
            same_points_list[key] = point_idx
            _G = np.mean(point_cloud[point_idx], axis=0)  # 所有点的重心
            _d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2)  # 计算到重心的距离
            _d.sort()
            inx = [j for j in range(0, len(_d), step)]  # 获取指定间隔元素下标
            for j in inx:
                index = point_idx[j]
                filtered_points.append(point_cloud[index])
            count = i
        elif h_sorted[i] != h_sorted[i - 1] and (i == len(h_sorted) - 1):
            point_idx1 = h_indice[count:i]
            key1 = h_sorted[i - 1]
            same_points_list[key1] = point_idx1
            _G = np.mean(point_cloud[point_idx1], axis=0)  # 所有点的重心
            _d = np.linalg.norm(point_cloud[point_idx1] - _G, axis=1, ord=2)  # 计算到重心的距离
            _d.sort()
            inx = [j for j in range(0, len(_d), step)]  # 获取指定间隔元素下标
            for j in inx:
                index = point_idx1[j]
                filtered_points.append(point_cloud[index])

            point_idx2 = h_indice[i:]
            key2 = h_sorted[i]
            same_points_list[key2] = point_idx2
            _G = np.mean(point_cloud[point_idx2], axis=0)  # 所有点的重心
            _d = np.linalg.norm(point_cloud[point_idx2] - _G, axis=1, ord=2)  # 计算到重心的距离
            _d.sort()
            inx = [j for j in range(0, len(_d), step)]  # 获取指定间隔元素下标
            for j in inx:
                index = point_idx2[j]
                filtered_points.append(point_cloud[index])
            count = i

        else:
            point_idx = h_indice[count: i]
            key = h_sorted[i - 1]
            same_points_list[key] = point_idx
            _G = np.mean(point_cloud[point_idx], axis=0)  # 所有点的重心
            _d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2)  # 计算到重心的距离
            _d.sort()
            inx = [j for j in range(0, len(_d), step)]  # 获取指定间隔元素下标
            for j in inx:
                index = point_idx[j]
                filtered_points.append(point_cloud[index])
            count = i

    # 把点云格式改成array,并对外返回
    # print(f'filtered_points[0]为{filtered_points[0]}')
    filtered_points = np.array(filtered_points, dtype=np.float64)
    return filtered_points,same_points_list


# 体素上采样
def voxel_upsample(same_points_list, point_cloud, filtered_points, filter_labels, leaf_size):
    upsample_label = []
    upsample_point = []
    upsample_index = []
    # step1 计算边界点
    x_max, y_max, z_max = np.amax(point_cloud, axis=0)  # 计算 x,y,z三个维度的最值
    x_min, y_min, z_min = np.amin(point_cloud, axis=0)
    # step2 确定体素的尺寸
    size_r = leaf_size
    # step3 计算每个 volex的维度 voxel grid
    Dx = (x_max - x_min) // size_r + 1
    Dy = (y_max - y_min) // size_r + 1
    Dz = (z_max - z_min) // size_r + 1
    print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))

    # step4 计算每个点(采样后的点)在volex grid内每一个维度的值
    h = list()
    for i in range(len(filtered_points)):
        hx = np.floor((filtered_points[i][0] - x_min) // size_r)
        hy = np.floor((filtered_points[i][1] - y_min) // size_r)
        hz = np.floor((filtered_points[i][2] - z_min) // size_r)
        h.append(hx + hy * Dx + hz * Dx * Dy)

    # step5 根据h值查询字典same_points_list
    h = np.array(h)
    count = 0
    for i in range(1, len(h)):
        if h[i] == h[i - 1] and i != (len(h) - 1):
            continue
        elif h[i] == h[i - 1] and i == (len(h) - 1):
            label = filter_labels[count:]
            key = h[i - 1]
            count = i
            # 累计label次数,classcount:{‘A’:2,'B':1}
            classcount = {}
            for i in range(len(label)):
                vote = label[i]
                classcount[vote] = classcount.get(vote, 0) + 1
            # 对map的value排序
            sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
            # key = h[i-1]
            point_index = same_points_list[key]  # h对应的point index列表
            for j in range(len(point_index)):
                upsample_label.append(sortedclass[0][0])
                index = point_index[j]
                upsample_point.append(point_cloud[index])
                upsample_index.append(index)
        elif h[i] != h[i - 1] and (i == len(h) - 1):
            label1 = filter_labels[count:i]
            key1 = h[i - 1]
            label2 = filter_labels[i:]
            key2 = h[i]
            count = i

            classcount = {}
            for i in range(len(label1)):
                vote = label1[i]
                classcount[vote] = classcount.get(vote, 0) + 1
            sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
            # key1 = h[i-1]
            point_index = same_points_list[key1]
            for j in range(len(point_index)):
                upsample_label.append(sortedclass[0][0])
                index = point_index[j]
                upsample_point.append(point_cloud[index])
                upsample_index.append(index)

            # label2 = filter_labels[i:]
            classcount = {}
            for i in range(len(label2)):
                vote = label2[i]
                classcount[vote] = classcount.get(vote, 0) + 1
            sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
            # key2 = h[i]
            point_index = same_points_list[key2]
            for j in range(len(point_index)):
                upsample_label.append(sortedclass[0][0])
                index = point_index[j]
                upsample_point.append(point_cloud[index])
                upsample_index.append(index)
        else:
            label = filter_labels[count:i]
            key = h[i - 1]
            count = i
            classcount = {}
            for i in range(len(label)):
                vote = label[i]
                classcount[vote] = classcount.get(vote, 0) + 1
            sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
            # key = h[i-1]
            point_index = same_points_list[key]  # h对应的point index列表
            for j in range(len(point_index)):
                upsample_label.append(sortedclass[0][0])
                index = point_index[j]
                upsample_point.append(point_cloud[index])
                upsample_index.append(index)
            # count = i

    # 恢复原始顺序
    # print(f'upsample_index[0]的值为{upsample_index[0]}')
    # print(f'upsample_index的总长度为{len(upsample_index)}')

    # 恢复index原始顺序
    upsample_index = np.array(upsample_index)
    upsample_index_indice = np.argsort(upsample_index)  # 提取索引,返回h里面的元素按从小到大排序的  索引
    upsample_index_sorted = upsample_index[upsample_index_indice]

    upsample_point = np.array(upsample_point)
    upsample_label = np.array(upsample_label)
    # 恢复point和label的原始顺序
    upsample_point_sorted = upsample_point[upsample_index_indice]
    upsample_label_sorted = upsample_label[upsample_index_indice]

    return upsample_point_sorted, upsample_label_sorted


# 利用knn算法上采样
def KNN_sklearn_Load_data(voxel_points, center_points, labels):
    # 载入数据
    # x_train, x_test, y_train, y_test = train_test_split(center_points, labels, test_size=0.1)
    # 构建模型
    model = neighbors.KNeighborsClassifier(n_neighbors=3)
    model.fit(center_points, labels)
    prediction = model.predict(voxel_points.reshape(1, -1))
    # meshtopoints_labels = classification_report(voxel_points, prediction)
    return prediction[0]


# 加载点进行knn上采样
def Load_data(voxel_points, center_points, labels):
    meshtopoints_labels = []
    # meshtopoints_labels.append(SVC_sklearn_Load_data(voxel_points[i], center_points, labels))
    for i in range(0, voxel_points.shape[0]):
        meshtopoints_labels.append(KNN_sklearn_Load_data(voxel_points[i], center_points, labels))
    return np.array(meshtopoints_labels)

# 将三角网格数据上采样回原始点云数据
def mesh_to_points_main(jaw, pcd_points, center_points, labels):
    points = pcd_points.copy()
    # 下采样
    voxel_points, same_points_list = voxel_filter(points, 0.6)

    after_labels = Load_data(voxel_points, center_points, labels)

    upsample_point, upsample_label = voxel_upsample(same_points_list, points, voxel_points, after_labels, 0.6)

    new_pcd = o3d.geometry.PointCloud()
    new_pcd.points = o3d.utility.Vector3dVector(upsample_point)
    instances_labels = upsample_label.copy()
    # '''
    # o3d.io.write_point_cloud(os.path.join(save_path, 'upsample_' + name + '.pcd'), new_pcd, write_ascii=True)
    for i in stqdm(range(0, upsample_label.shape[0])):
        if jaw == 'upper':
            if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
                upsample_label[i] = upsample_label[i] + 10
            elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
                upsample_label[i] = upsample_label[i] + 12
        else:
            if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
                upsample_label[i] = upsample_label[i] + 30
            elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
                upsample_label[i] = upsample_label[i] + 32
    remove_outlier_main(jaw, pcd_points, upsample_label, instances_labels)


# 将原始点云数据转换为三角网格
def mesh_grid(pcd_points):
    new_pcd,_ = voxel_filter(pcd_points, 0.6)
    # pcd需要有法向量

    # estimate radius for rolling ball
    pcd_new = o3d.geometry.PointCloud()
    pcd_new.points = o3d.utility.Vector3dVector(new_pcd)
    pcd_new.estimate_normals()
    distances = pcd_new.compute_nearest_neighbor_distance()
    avg_dist = np.mean(distances)
    radius = 6 * avg_dist
    mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
        pcd_new,
        o3d.utility.DoubleVector([radius, radius * 2]))
    # o3d.io.write_triangle_mesh("./tooth date/test.ply", mesh)

    return mesh


# 读取obj文件内容
def read_obj(obj_path):
    jaw = None
    with open(obj_path) as file:
        points = []
        faces = []
        while 1:
            line = file.readline()
            if not line:
                break
            strs = line.split(" ")
            if strs[0] == "v":
                points.append((float(strs[1]), float(strs[2]), float(strs[3])))
            elif strs[0] == "f":
                faces.append((int(strs[1]), int(strs[2]), int(strs[3])))
            elif strs[1][0:5] == 'lower':
                jaw = 'lower'
            elif strs[1][0:5] == 'upper':
                jaw = 'upper'

    points = np.array(points)
    faces = np.array(faces)

    if jaw is None:
        raise ValueError("Jaw type not found in OBJ file")

    return points, faces, jaw


# obj文件转为pcd文件
def obj2pcd(obj_path):
    if os.path.exists(obj_path):
        print('yes')
    points, _, jaw = read_obj(obj_path)
    pcd_list = []
    num_points = np.shape(points)[0]
    for i in range(num_points):
        new_line = str(points[i, 0]) + ' ' + str(points[i, 1]) + ' ' + str(points[i, 2])
        pcd_list.append(new_line.split())

    pcd_points = np.array(pcd_list).astype(np.float64)
    return pcd_points, jaw


def segmentation_main(obj_path):
    upsampling_method = 'KNN'

    model_path = 'Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar'
    num_classes = 17
    num_channels = 15

    # set model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = MeshSegNet(num_classes=num_classes, num_channels=num_channels).to(device, dtype=torch.float)

    # load trained model
    # checkpoint = torch.load(os.path.join(model_path, model_name), map_location='cpu')
    checkpoint = torch.load(model_path, map_location='cpu')
    model.load_state_dict(checkpoint['model_state_dict'])
    del checkpoint
    model = model.to(device, dtype=torch.float)

    # cudnn
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.enabled = True

    # Predicting
    model.eval()
    with torch.no_grad():
        pcd_points, jaw = obj2pcd(obj_path)
        mesh = mesh_grid(pcd_points)

        # move mesh to origin
        with st.spinner("Patience please, AI at work. Grab a coffee while you wait ☕."):
            vertices_points = np.asarray(mesh.vertices)
            triangles_points = np.asarray(mesh.triangles)
            N = triangles_points.shape[0]
            cells = np.zeros((triangles_points.shape[0], 9))
            cells = vertices_points[triangles_points].reshape(triangles_points.shape[0], 9)

            mean_cell_centers = mesh.get_center()
            cells[:, 0:3] -= mean_cell_centers[0:3]
            cells[:, 3:6] -= mean_cell_centers[0:3]
            cells[:, 6:9] -= mean_cell_centers[0:3]

            v1 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
            v2 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
            v1[:, 0] = cells[:, 0] - cells[:, 3]
            v1[:, 1] = cells[:, 1] - cells[:, 4]
            v1[:, 2] = cells[:, 2] - cells[:, 5]
            v2[:, 0] = cells[:, 3] - cells[:, 6]
            v2[:, 1] = cells[:, 4] - cells[:, 7]
            v2[:, 2] = cells[:, 5] - cells[:, 8]
            mesh_normals = np.cross(v1, v2)
            mesh_normal_length = np.linalg.norm(mesh_normals, axis=1)
            mesh_normals[:, 0] /= mesh_normal_length[:]
            mesh_normals[:, 1] /= mesh_normal_length[:]
            mesh_normals[:, 2] /= mesh_normal_length[:]

            # prepare input
            points = vertices_points.copy()
            points[:, 0:3] -= mean_cell_centers[0:3]
            normals = np.nan_to_num(mesh_normals).copy()
            barycenters = np.zeros((triangles_points.shape[0], 3))
            s = np.sum(vertices_points[triangles_points], 1)
            barycenters = 1 / 3 * s
            center_points = barycenters.copy()
            barycenters -= mean_cell_centers[0:3]

            # normalized data
            maxs = points.max(axis=0)
            mins = points.min(axis=0)
            means = points.mean(axis=0)
            stds = points.std(axis=0)
            nmeans = normals.mean(axis=0)
            nstds = normals.std(axis=0)

            for i in range(3):
                cells[:, i] = (cells[:, i] - means[i]) / stds[i]  # point 1
                cells[:, i + 3] = (cells[:, i + 3] - means[i]) / stds[i]  # point 2
                cells[:, i + 6] = (cells[:, i + 6] - means[i]) / stds[i]  # point 3
                barycenters[:, i] = (barycenters[:, i] - mins[i]) / (maxs[i] - mins[i])
                normals[:, i] = (normals[:, i] - nmeans[i]) / nstds[i]

            X = np.column_stack((cells, barycenters, normals))

            # computing A_S and A_L
            A_S = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
            A_L = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
            D = distance_matrix(X[:, 9:12], X[:, 9:12])
            A_S[D < 0.1] = 1.0
            A_S = A_S / np.dot(np.sum(A_S, axis=1, keepdims=True), np.ones((1, X.shape[0])))

            A_L[D < 0.2] = 1.0
            A_L = A_L / np.dot(np.sum(A_L, axis=1, keepdims=True), np.ones((1, X.shape[0])))

            # numpy -> torch.tensor
            X = X.transpose(1, 0)
            X = X.reshape([1, X.shape[0], X.shape[1]])
            X = torch.from_numpy(X).to(device, dtype=torch.float)
            A_S = A_S.reshape([1, A_S.shape[0], A_S.shape[1]])
            A_L = A_L.reshape([1, A_L.shape[0], A_L.shape[1]])
            A_S = torch.from_numpy(A_S).to(device, dtype=torch.float)
            A_L = torch.from_numpy(A_L).to(device, dtype=torch.float)

            tensor_prob_output = model(X, A_S, A_L).to(device, dtype=torch.float)
            patch_prob_output = tensor_prob_output.cpu().numpy()

        # refinement
        with st.spinner("Refining..."):
            round_factor = 100
            patch_prob_output[patch_prob_output < 1.0e-6] = 1.0e-6

            # unaries
            unaries = -round_factor * np.log10(patch_prob_output)
            unaries = unaries.astype(np.int32)
            unaries = unaries.reshape(-1, num_classes)

            # parawisex
            pairwise = (1 - np.eye(num_classes, dtype=np.int32))

            cells = cells.copy()

            cell_ids = np.asarray(triangles_points)
            lambda_c = 20
            edges = np.empty([1, 3], order='C')
            for i_node in stqdm(range(cells.shape[0])):
                # Find neighbors
                nei = np.sum(np.isin(cell_ids, cell_ids[i_node, :]), axis=1)
                nei_id = np.where(nei == 2)
                for i_nei in nei_id[0][:]:
                    if i_node < i_nei:
                        cos_theta = np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]) / np.linalg.norm(
                            normals[i_node, 0:3]) / np.linalg.norm(normals[i_nei, 0:3])
                        if cos_theta >= 1.0:
                            cos_theta = 0.9999
                        theta = np.arccos(cos_theta)
                        phi = np.linalg.norm(barycenters[i_node, :] - barycenters[i_nei, :])
                        if theta > np.pi / 2.0:
                            edges = np.concatenate(
                                (edges, np.array([i_node, i_nei, -np.log10(theta / np.pi) * phi]).reshape(1, 3)), axis=0)
                        else:
                            beta = 1 + np.linalg.norm(np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]))
                            edges = np.concatenate(
                                (edges, np.array([i_node, i_nei, -beta * np.log10(theta / np.pi) * phi]).reshape(1, 3)),
                                axis=0)
            edges = np.delete(edges, 0, 0)
            edges[:, 2] *= lambda_c * round_factor
            edges = edges.astype(np.int32)

            refine_labels = cut_from_graph(edges, unaries, pairwise)
            refine_labels = refine_labels.reshape([-1, 1])

            predicted_labels_3 = refine_labels.reshape(refine_labels.shape[0])
            mesh_to_points_main(jaw, pcd_points, center_points, predicted_labels_3)

            import pyvista as pv
            with st.spinner("Rendering..."):
                # Load the .obj file
                mesh = pv.read('file.obj')

                # Load the JSON file
                with open('dental-labels4.json', 'r') as file:
                    labels_data = json.load(file)

                # Assuming labels_data['labels'] is a list of labels
                labels = labels_data['labels']

                # Make sure the number of labels matches the number of vertices or faces
                assert len(labels) == mesh.n_points or len(labels) == mesh.n_cells

                # If labels correspond to vertices
                if len(labels) == mesh.n_points:
                    mesh.point_data['Labels'] = labels
                # If labels correspond to faces
                elif len(labels) == mesh.n_cells:
                    mesh.cell_data['Labels'] = labels
                
                # Create a pyvista plotter
                plotter = pv.Plotter()

                cmap = plt.cm.get_cmap('jet', 27)  # Using a colormap with sufficient distinct colors

                colors = cmap(np.linspace(0, 1, 27))  # Generate colors

                # Convert colors to a format acceptable by PyVista
                colormap = mcolors.ListedColormap(colors)

                # Add the mesh to the plotter with labels as a scalar field
                #plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap='jet')
                plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap=colormap, clim=[0, 27])

                # Show the plot
                #plotter.show()
                ## Send to streamlit
                with st.expander("**View Segmentation Result** - ", expanded=False):
                    stpyvista(plotter)

# Configure Streamlit page
st.set_page_config(page_title="Teeth Segmentation", page_icon="🦷")

class Segment(TeethApp):
    def __init__(self):
        TeethApp.__init__(self)
        self.build_app()

    def build_app(self):

        st.title("Segment Intra-oral Scans")
        st.markdown("Identify and segment teeth. Segmentation is performed using MeshSegNet, a deep learning model trained on both upper and lower jaws.")

        inputs = st.radio(
            "Select scan for segmentation:",
            ("Upload Scan", "Example Scan"),
        )
        import pyvista as pv
        if inputs == "Example Scan":
            st.markdown("Expected time per prediction: 7-10 min.")
            mesh = pv.read("ZOUIF2W4_upper.obj")
            plotter = pv.Plotter()

            # Add the mesh to the plotter
            plotter.add_mesh(mesh, color='white', show_edges=False)
            segment = st.button(
                "✔️ Submit",
                help="Submit 3D scan for segmentation",
            )
            with st.expander("View Scan", expanded=False):
                stpyvista(plotter)

            if segment:
                segmentation_main("ZOUIF2W4_upper.obj")

            

        elif inputs == "Upload Scan":
            file = st.file_uploader("Please upload an OBJ Object file", type=["OBJ"])
            st.markdown("Expected time per prediction: 7-10 min.")
            if file is not None:
                # save the uploaded file to disk
                with open("file.obj", "wb") as buffer:
                    shutil.copyfileobj(file, buffer)
                # 复制数据
                obj_path = "file.obj"

                mesh = pv.read(obj_path)
                plotter = pv.Plotter()

                # Add the mesh to the plotter
                plotter.add_mesh(mesh, color='white', show_edges=False)
                segment = st.button(
                "✔️ Submit",
                help="Submit 3D scan for segmentation",
            )
                with st.expander("View Scan", expanded=False):
                    stpyvista(plotter)

                if segment:
                    segmentation_main(obj_path)


                
                    

if __name__ == "__main__":
    app = Segment()