import subprocess import time import os import gradio as gr from openai import OpenAI from huggingface_hub import snapshot_download # Utility functions def run_command(command, cwd=None): """Run a system command.""" result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True) if result.returncode != 0: print(f"Command failed: {command}") print(f"Error: {result.stderr}") exit(result.returncode) else: print(f"Command succeeded: {command}") print(result.stdout) # Model configuration #MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" MODEL_ID = "open-thoughts/OpenThinker-7B-Unverified" QUANT = "Q5_K_M" def setup_llama_cpp(): """Clone and compile llama.cpp repository.""" if not os.path.exists('llama.cpp'): run_command('git clone https://github.com/ggml-org/llama.cpp.git') os.chdir('llama.cpp') run_command('pip install -r requirements.txt') run_command('cmake -B build') run_command('cmake --build build --config Release -j 8') os.chdir('..') def setup_model(model_id): """Download and convert model to GGUF format, return quantized model path.""" local_dir = model_id.split('/')[-1] if not os.path.exists(local_dir): snapshot_download(repo_id=model_id, local_dir=local_dir) gguf_path = f"{local_dir}.gguf" if not os.path.exists(gguf_path): run_command(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}') quantized_path = f"{local_dir}-{QUANT}.gguf" if not os.path.exists(quantized_path): run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}') return quantized_path def start_llama_server(model_path): """Start llama-server in the background.""" cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768' process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Give the server a moment to start time.sleep(5) return process # GUI-specific utilities def format_time(seconds_float): total_seconds = int(round(seconds_float)) hours = total_seconds // 3600 remaining_seconds = total_seconds % 3600 minutes = remaining_seconds // 60 seconds = remaining_seconds % 60 if hours > 0: return f"{hours}h {minutes}m {seconds}s" elif minutes > 0: return f"{minutes}m {seconds}s" else: return f"{seconds}s" DESCRIPTION = ''' # Duplicate the space for free private inference. ## DeepSeek-R1 Distill Qwen-1.5B Demo A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. ''' CSS = """ .spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } .thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; } .thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; } .thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; } details:not([open]) .thinking-container { border-left-color: #290c15; } details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; } """ client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") # Update the user() function to use dictionary format def user(message, history): if not isinstance(message, str): message = str(message) history = history if history is not None else [] # Append the user message as a dict history.append({"role": "user", "content": message}) return "", history class ParserState: __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time'] def __init__(self): self.answer = "" self.thought = "" self.in_think = False self.start_time = 0 self.last_pos = 0 self.total_think_time = 0.0 def parse_response(text, state): buffer = text[state.last_pos:] state.last_pos = len(text) while buffer: if not state.in_think: think_start = buffer.find('') if think_start != -1: state.answer += buffer[:think_start] state.in_think = True state.start_time = time.perf_counter() buffer = buffer[think_start + 7:] else: state.answer += buffer break else: think_end = buffer.find('') if think_end != -1: state.thought += buffer[:think_end] duration = time.perf_counter() - state.start_time state.total_think_time += duration state.in_think = False buffer = buffer[think_end + 8:] else: state.thought += buffer break elapsed = time.perf_counter() - state.start_time if state.in_think else 0 return state, elapsed def format_response(state, elapsed): answer_part = state.answer.replace('', '').replace('', '') collapsible = [] collapsed = "
" if state.thought or state.in_think: if state.in_think: total_elapsed = state.total_think_time + elapsed formatted_time = format_time(total_elapsed) status = f"🌀 Thinking for {formatted_time}" else: formatted_time = format_time(state.total_think_time) status = f"✅ Thought for {formatted_time}" collapsed = "
" collapsible.append( f"{collapsed}{status}\n\n
\n{state.thought}\n
\n
" ) return collapsible, answer_part # Modified generate_response() using dictionary-format history def generate_response(history, temperature, top_p, max_tokens, active_gen): # Guard against empty history. if not history: yield [] return # Build messages: system message + conversation history. messages = [{"role": "system", "content": "You are a helpful assistant."}] + history full_response = "" state = ParserState() try: stream = client.chat.completions.create( model="", # Model name not needed with llama-server messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_tokens, stream=True ) for chunk in stream: if not active_gen[0]: break if chunk.choices[0].delta.content: full_response += chunk.choices[0].delta.content state, elapsed = parse_response(full_response, state) collapsible, answer_part = format_response(state, elapsed) # Update or add the assistant reply in history if history and history[-1].get("role") == "assistant": history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) else: history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) yield history state, elapsed = parse_response(full_response, state) collapsible, answer_part = format_response(state, elapsed) if history and history[-1].get("role") == "assistant": history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) else: history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) yield history except Exception as e: if history and history[-1].get("role") == "assistant": history[-1]["content"] = f"Error: {str(e)}" else: history.append({"role": "assistant", "content": f"Error: {str(e)}"}) yield history finally: active_gen[0] = False # GUI setup with gr.Blocks(css=CSS) as demo: gr.Markdown(DESCRIPTION) active_gen = gr.State([False]) chatbot = gr.Chatbot( elem_id="chatbot", height=500, show_label=False, render_markdown=True, value=[], # initial value as an empty list type="messages" # use messages format (dict with role and content) ) with gr.Row(): msg = gr.Textbox( label="Message", placeholder="Type your message...", container=False, scale=4 ) submit_btn = gr.Button("Send", variant='primary', scale=1) with gr.Column(scale=2): with gr.Row(): clear_btn = gr.Button("Clear", variant='secondary') stop_btn = gr.Button("Stop", variant='stop') with gr.Accordion("Parameters", open=False): temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") gr.Examples( examples=[ ["How many r's are in the word strawberry?"], ["Write 10 funny sentences that end in a fruit!"], ["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"] ], inputs=msg, label="Example Prompts" ) submit_event = submit_btn.click( user, [msg, chatbot], [msg, chatbot], queue=False ).then( lambda: [True], outputs=active_gen ).then( generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot ) msg.submit( user, [msg, chatbot], [msg, chatbot], queue=False ).then( lambda: [True], outputs=active_gen ).then( generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot ) stop_btn.click( lambda: [False], None, active_gen, cancels=[submit_event] ) clear_btn.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": # Install dependencies run_command('pip install llama-cpp-python openai') setup_llama_cpp() MODEL_PATH = setup_model(MODEL_ID) # Start llama-server server_process = start_llama_server(MODEL_PATH) try: # Launch GUI (set share=True if you need a public link) demo.launch(server_name="0.0.0.0", server_port=7860) finally: # Cleanup: terminate the server process when the GUI is closed server_process.terminate() server_process.wait()