import subprocess
import time
import os
import gradio as gr
from openai import OpenAI
from huggingface_hub import snapshot_download
# Utility functions
def run_command(command, cwd=None):
"""Run a system command."""
result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True)
if result.returncode != 0:
print(f"Command failed: {command}")
print(f"Error: {result.stderr}")
exit(result.returncode)
else:
print(f"Command succeeded: {command}")
print(result.stdout)
# Model configuration
#MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
MODEL_ID = "open-thoughts/OpenThinker-7B-Unverified"
QUANT = "Q5_K_M"
def setup_llama_cpp():
"""Clone and compile llama.cpp repository."""
if not os.path.exists('llama.cpp'):
run_command('git clone https://github.com/ggml-org/llama.cpp.git')
os.chdir('llama.cpp')
run_command('pip install -r requirements.txt')
run_command('cmake -B build')
run_command('cmake --build build --config Release -j 8')
os.chdir('..')
def setup_model(model_id):
"""Download and convert model to GGUF format, return quantized model path."""
local_dir = model_id.split('/')[-1]
if not os.path.exists(local_dir):
snapshot_download(repo_id=model_id, local_dir=local_dir)
gguf_path = f"{local_dir}.gguf"
if not os.path.exists(gguf_path):
run_command(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}')
quantized_path = f"{local_dir}-{QUANT}.gguf"
if not os.path.exists(quantized_path):
run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}')
return quantized_path
def start_llama_server(model_path):
"""Start llama-server in the background."""
cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768'
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Give the server a moment to start
time.sleep(5)
return process
# GUI-specific utilities
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
# Duplicate the space for free private inference.
## DeepSeek-R1 Distill Qwen-1.5B Demo
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
'''
CSS = """
.spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; }
@keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }
.thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; }
.thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; }
.thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; }
details:not([open]) .thinking-container { border-left-color: #290c15; }
details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; }
"""
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
# Update the user() function to use dictionary format
def user(message, history):
if not isinstance(message, str):
message = str(message)
history = history if history is not None else []
# Append the user message as a dict
history.append({"role": "user", "content": message})
return "", history
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think:
think_start = buffer.find('')
if think_start != -1:
state.answer += buffer[:think_start]
state.in_think = True
state.start_time = time.perf_counter()
buffer = buffer[think_start + 7:]
else:
state.answer += buffer
break
else:
think_end = buffer.find('')
if think_end != -1:
state.thought += buffer[:think_end]
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[think_end + 8:]
else:
state.thought += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer.replace('', '').replace('', '')
collapsible = []
collapsed = ""
if state.thought or state.in_think:
if state.in_think:
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"🌀 Thinking for {formatted_time}"
else:
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = ""
collapsible.append(
f"{collapsed}{status}
\n\n\n{state.thought}\n
\n "
)
return collapsible, answer_part
# Modified generate_response() using dictionary-format history
def generate_response(history, temperature, top_p, max_tokens, active_gen):
# Guard against empty history.
if not history:
yield []
return
# Build messages: system message + conversation history.
messages = [{"role": "system", "content": "You are a helpful assistant."}] + history
full_response = ""
state = ParserState()
try:
stream = client.chat.completions.create(
model="", # Model name not needed with llama-server
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True
)
for chunk in stream:
if not active_gen[0]:
break
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
# Update or add the assistant reply in history
if history and history[-1].get("role") == "assistant":
history[-1]["content"] = "\n\n".join(collapsible + [answer_part])
else:
history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])})
yield history
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
if history and history[-1].get("role") == "assistant":
history[-1]["content"] = "\n\n".join(collapsible + [answer_part])
else:
history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])})
yield history
except Exception as e:
if history and history[-1].get("role") == "assistant":
history[-1]["content"] = f"Error: {str(e)}"
else:
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
yield history
finally:
active_gen[0] = False
# GUI setup
with gr.Blocks(css=CSS) as demo:
gr.Markdown(DESCRIPTION)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True,
value=[], # initial value as an empty list
type="messages" # use messages format (dict with role and content)
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your message...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
gr.Examples(
examples=[
["How many r's are in the word strawberry?"],
["Write 10 funny sentences that end in a fruit!"],
["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
],
inputs=msg,
label="Example Prompts"
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
# Install dependencies
run_command('pip install llama-cpp-python openai')
setup_llama_cpp()
MODEL_PATH = setup_model(MODEL_ID)
# Start llama-server
server_process = start_llama_server(MODEL_PATH)
try:
# Launch GUI (set share=True if you need a public link)
demo.launch(server_name="0.0.0.0", server_port=7860)
finally:
# Cleanup: terminate the server process when the GUI is closed
server_process.terminate()
server_process.wait()