Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,8 @@ import gradio as gr
|
|
2 |
from gradio_client import Client
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
-
import traceback
|
6 |
-
import random
|
7 |
import time
|
|
|
8 |
|
9 |
# Create Client instances for the repositories
|
10 |
clients = [
|
@@ -15,13 +14,15 @@ clients = [
|
|
15 |
# Counter for image filenames to avoid overwriting
|
16 |
count = 0
|
17 |
|
|
|
|
|
|
|
18 |
# Gradio Interface Function to handle image generation
|
19 |
def infer_gradio(prompt: str):
|
20 |
-
global count
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
# Prepare the inputs for the prediction
|
26 |
inputs = {
|
27 |
"prompt": prompt,
|
@@ -32,8 +33,8 @@ def infer_gradio(prompt: str):
|
|
32 |
# Send the request to the model and receive the result (image URL or file path)
|
33 |
result = client.predict(inputs, api_name="/infer")
|
34 |
|
35 |
-
#
|
36 |
-
image = Image.open(result)
|
37 |
|
38 |
# Create a unique filename to save the image
|
39 |
filename = f"img_{count:08d}.jpg"
|
@@ -46,6 +47,9 @@ def infer_gradio(prompt: str):
|
|
46 |
print(f"Saved image as {filename}")
|
47 |
|
48 |
# Return the image to be displayed in Gradio
|
|
|
|
|
|
|
49 |
return image
|
50 |
|
51 |
except Exception as e:
|
|
|
2 |
from gradio_client import Client
|
3 |
from PIL import Image
|
4 |
import os
|
|
|
|
|
5 |
import time
|
6 |
+
import traceback
|
7 |
|
8 |
# Create Client instances for the repositories
|
9 |
clients = [
|
|
|
14 |
# Counter for image filenames to avoid overwriting
|
15 |
count = 0
|
16 |
|
17 |
+
# Global counter for selecting clients in order
|
18 |
+
client_index = 0
|
19 |
+
|
20 |
# Gradio Interface Function to handle image generation
|
21 |
def infer_gradio(prompt: str):
|
22 |
+
global count, client_index
|
23 |
+
# Select the current client based on the client_index
|
24 |
+
client = clients[client_index]
|
25 |
+
|
|
|
26 |
# Prepare the inputs for the prediction
|
27 |
inputs = {
|
28 |
"prompt": prompt,
|
|
|
33 |
# Send the request to the model and receive the result (image URL or file path)
|
34 |
result = client.predict(inputs, api_name="/infer")
|
35 |
|
36 |
+
# Open the resulting image
|
37 |
+
image = Image.open(result)
|
38 |
|
39 |
# Create a unique filename to save the image
|
40 |
filename = f"img_{count:08d}.jpg"
|
|
|
47 |
print(f"Saved image as {filename}")
|
48 |
|
49 |
# Return the image to be displayed in Gradio
|
50 |
+
# Update the client_index to use the next client in the next call
|
51 |
+
client_index = (client_index + 1) % len(clients) # Cycle through clients
|
52 |
+
|
53 |
return image
|
54 |
|
55 |
except Exception as e:
|