hsuwill000's picture
Update app.py
7b9aa9d verified
raw
history blame
2.59 kB
import gradio as gr
from gradio_client import Client
from PIL import Image
import os
import traceback
import random
import time
# Create Client instances for the repositories
clients = [
Client("hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD"),
Client("HelloSun/LCM_Dreamshaper_v7-int8-ov")
]
# Counter for image filenames to avoid overwriting
count = 0
# Gradio Interface Function to handle image generation
def infer_gradio(prompt: str):
global count
random.seed(time.time())
# Randomly choose a client
client = random.choice(clients)
# Prepare the inputs for the prediction
inputs = {
"prompt": prompt,
"num_inference_steps": 10 # Number of inference steps for the model
}
try:
# Send the request to the model and receive the result (image URL or file path)
result = client.predict(inputs, api_name="/infer")
# Assuming the result is a URL or path, use it to open the image
image = Image.open(result) # If the result is a URL, ensure you download it first
# Create a unique filename to save the image
filename = f"img_{count:08d}.jpg"
while os.path.exists(filename):
count += 1
filename = f"img_{count:08d}.jpg"
# Save the image locally
image.save(filename)
print(f"Saved image as {filename}")
# Return the image to be displayed in Gradio
return image
except Exception as e:
# Handle any errors that occur
print(f"An exception occurred: {str(e)}")
print("Stack trace:")
traceback.print_exc() # Print stack trace for debugging
return None # Return nothing if an error occurs
# Define Gradio Interface
with gr.Blocks() as demo:
with gr.Row(): # Use a Row to place the prompt input and the button side by side
prompt_input = gr.Textbox(
label="Enter Your Prompt",
show_label=False,
placeholder="Type your prompt for image generation here",
lines=1, # Set the input to be only one line tall
interactive=True # Allow user to interact with the textbox
)
# Change the button text to "RUN" and align it with the prompt input
run_button = gr.Button("RUN")
# Output image display area
output_image = gr.Image(label="Generated Image")
# Connecting the button click to the image generation function
run_button.click(infer_gradio, inputs=prompt_input, outputs=output_image)
demo.launch()