Spaces:
Running
Running
File size: 2,466 Bytes
0dfc187 7a13824 0dfc187 c20305d 0dfc187 0264023 0dfc187 5469b0c 0dfc187 5469b0c 3ac85d0 0dfc187 5469b0c 3ac85d0 5469b0c 0dfc187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from gradio_client import Client
from PIL import Image
import os
import time
import traceback
# Create a Client instance to communicate with the Hugging Face space
client = Client("hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD")
# Counter for image filenames to avoid overwriting
count = 0
# Gradio Interface Function to handle image generation
def infer_gradio(prompt: str):
global count
# Prepare the inputs for the prediction
inputs = {
"prompt": prompt,
"num_inference_steps": 10 # Number of inference steps for the model
}
try:
# Send the request to the model and receive the image
result = client.predict(inputs, api_name="/infer")
# Open the resulting image
image = Image.open(result)
# Create a unique filename to save the image
filename = f"img_{count:08d}.jpg"
while os.path.exists(filename):
count += 1
filename = f"img_{count:08d}.jpg"
# Save the image locally
image.save(filename)
print(f"Saved image as {filename}")
# Return the image to be displayed in Gradio
return image
except Exception as e:
# Handle any errors that occur
print(f"An exception occurred: {str(e)}")
print("Stack trace:")
traceback.print_exc() # Print stack trace for debugging
return None # Return nothing if an error occurs
# Define Gradio Interface
with gr.Blocks() as demo:
with gr.Row(): # Use a Row to place the prompt input and the button side by side
prompt_input = gr.Textbox(
placeholder="Type your prompt for image generation here",
lines=1, # Set the input to be only one line tall
interactive=True, # Allow user to interact with the textbox
elem_id="prompt-input" # Optional: For CSS styling
).style(
width="80%" # Set the prompt input width to 4/5
)
# Change the button text to "RUN:" and align it with the prompt input
run_button = gr.Button("RUN:").style(
width="20%" # Set the button width to 1/5
)
# Output image display area
output_image = gr.Image(label="Generated Image")
# Connecting the button click to the image generation function
run_button.click(infer_gradio, inputs=prompt_input, outputs=output_image)
demo.launch()
|