hsuwill000 commited on
Commit
8a59eae
·
verified ·
1 Parent(s): de2f9cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -50
app.py CHANGED
@@ -1,64 +1,129 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
 
 
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ import os
2
+ import subprocess
3
  import gradio as gr
4
+ from transformers import AutoTokenizer
5
+ from optimum.intel.openvino import OVModelForCausalLM
6
+ from sentence_transformers import SentenceTransformer
7
+ import faiss
8
+ import numpy as np
9
+ import warnings
10
 
11
+ warnings.filterwarnings(
12
+ "ignore",
13
+ category=DeprecationWarning,
14
+ message="__array__ implementation doesn't accept a copy keyword"
15
+ )
16
 
17
+ # 設定模型 ID 與轉換後存檔路徑(8-bit 量化版)
18
+ model_id = "agentica-org/DeepScaleR-1.5B-Preview"
19
+ export_path = "exported_model_openvino_int8"
20
 
21
+ print("Loading model as OpenVINO int8 (8-bit) model...")
 
 
 
 
 
 
 
 
22
 
23
+ if os.path.exists(export_path) and os.listdir(export_path):
24
+ print(f"Found quantized OpenVINO model at '{export_path}', loading it...")
25
+ model = OVModelForCausalLM.from_pretrained(export_path, device_map="auto", use_cache=False)
26
+ else:
27
+ print("No quantized model found, exporting and quantizing to OpenVINO int8 now...")
28
+ # 透過 optimum-cli 導出並量化模型(此命令行參數根據你的任務可能需要調整)
29
+ command = [
30
+ "optimum-cli", "export", "openvino",
31
+ "--model", model_id,
32
+ "--task", "text-generation",
33
+ "--weight-format", "int8",
34
+ export_path
35
+ ]
36
+ subprocess.run(command, check=True)
37
+ print(f"Quantized model saved to '{export_path}'.")
38
+ model = OVModelForCausalLM.from_pretrained(export_path, device_map="auto", use_cache=False)
39
 
40
+ print("Loading tokenizer...")
41
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
42
 
43
+ # 載入向量模型(用於將文本轉換為向量)
44
+ encoder = SentenceTransformer("all-MiniLM-L6-v2")
45
 
46
+ # FAQ 知識庫(問題 + 回答)
47
+ faq_data = [
48
+ ("What is FAISS?", "FAISS is a library for efficient similarity search and clustering of dense vectors."),
49
+ ("How does FAISS work?", "FAISS uses indexing structures to quickly retrieve the nearest neighbors of a query vector."),
50
+ ("Can FAISS run on GPU?", "Yes, FAISS supports GPU acceleration for faster computation."),
51
+ ("What is OpenVINO?", "OpenVINO is an inference engine optimized for Intel hardware."),
52
+ ("How to fine-tune a model?", "Fine-tuning involves training a model on a specific dataset to adapt it to a particular task."),
53
+ ("What is the best way to optimize inference speed?", "Using quantization and model distillation can significantly improve inference speed.")
54
+ ]
55
 
56
+ # FAQ 問題轉換為向量
57
+ faq_questions = [q for q, _ in faq_data]
58
+ faq_answers = [a for _, a in faq_data]
59
+ faq_vectors = np.array(encoder.encode(faq_questions)).astype("float32")
60
 
61
+ # 建立 FAISS 索引(使用 L2 距離)
62
+ d = faq_vectors.shape[1] # 向量維度
63
+ index = faiss.IndexFlatL2(d)
64
+ index.add(faq_vectors)
65
 
66
+ # 對話歷史記錄
67
+ history = []
68
+
69
+ # 查詢函數:先嘗試從 FAQ 中檢索答案,若無匹配則使用 OpenVINO 模型生成回答
70
+ def respond(prompt):
71
+ global history
72
+ # 將輸入轉換為向量,並使用 FAISS 查詢最相近的 FAQ 問題
73
+ query_vector = np.array(encoder.encode([prompt])).astype("float32")
74
+ D, I = index.search(query_vector, 1)
75
+
76
+ if D[0][0] < 1.0:
77
+ response = faq_answers[I[0][0]]
78
+ else:
79
+ # 若 FAQ 無匹配,則使用 OpenVINO 模型生成回答
80
+ messages = [{"role": "system", "content": "Answer the question in English only."}]
81
+ for user_text, assistant_text in history:
82
+ messages.append({"role": "user", "content": user_text})
83
+ messages.append({"role": "assistant", "content": assistant_text})
84
+ messages.append({"role": "user", "content": prompt})
85
+
86
+ # 將對話訊息組成一個 prompt(以換行分隔)
87
+ chat_prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
88
+ model_inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device)
89
+ generated_ids = model.generate(
90
+ **model_inputs,
91
+ max_new_tokens=512,
92
+ temperature=0.7,
93
+ top_p=0.9,
94
+ do_sample=True
95
+ )
96
+ response = tokenizer.decode(generated_ids[0], skip_special_tokens=True).strip()
97
+
98
+ history.append((prompt, response))
99
+ return response
100
+
101
+ # 清除對話歷史記錄
102
+ def clear_history():
103
+ global history
104
+ history = []
105
+ return "History cleared!"
106
 
107
+ # 建立 Gradio 介面
108
+ with gr.Blocks() as demo:
109
+ gr.Markdown("# DeepScaleR-1.5B-Preview (OpenVINO int8) Chatbot with FAISS FAQ")
110
+
111
+ with gr.Tabs():
112
+ with gr.TabItem("Chat"):
113
+ chat_interface = gr.Interface(
114
+ fn=respond,
115
+ inputs=gr.Textbox(label="Prompt", placeholder="Enter your message..."),
116
+ outputs=gr.Textbox(label="Response", interactive=False),
117
+ api_name="hchat",
118
+ title="DeepScaleR-1.5B-Preview (OpenVINO int8) Chatbot",
119
+ description="This chatbot first searches an FAQ database using FAISS, then uses an OpenVINO 8-bit model to generate a response if no FAQ match is found."
120
+ )
121
+
122
+ with gr.Row():
123
+ clear_button = gr.Button("🧹 Clear History")
124
+
125
+ clear_button.click(fn=clear_history, inputs=[], outputs=[])
126
 
127
  if __name__ == "__main__":
128
+ print("Launching Gradio app...")
129
+ demo.launch(server_name="0.0.0.0", server_port=7860, share=True)