Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import torch.nn as nn
|
|
4 |
import torchaudio
|
5 |
import json
|
6 |
import numpy as np
|
|
|
|
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from transformers import PretrainedConfig, PreTrainedModel
|
9 |
|
@@ -13,7 +16,7 @@ class AudioLanguageClassifierConfig(PretrainedConfig):
|
|
13 |
|
14 |
def __init__(
|
15 |
self,
|
16 |
-
num_labels=10,
|
17 |
sampling_rate=16000,
|
18 |
num_mel_bins=128,
|
19 |
feature_size=512,
|
@@ -158,42 +161,94 @@ def load_model():
|
|
158 |
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
159 |
mappings_path = hf_hub_download(repo_id=repo_id, filename="language_mappings.json")
|
160 |
|
161 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
with open(config_path, "r") as f:
|
163 |
config_dict = json.load(f)
|
164 |
|
165 |
-
|
166 |
-
config_dict["num_labels"] = 10
|
167 |
-
|
168 |
config = AudioLanguageClassifierConfig(**config_dict)
|
169 |
|
170 |
-
#
|
171 |
model = AudioLanguageClassifier(config)
|
172 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
173 |
-
model.eval()
|
174 |
|
175 |
-
# Load
|
176 |
-
|
177 |
-
mappings = json.load(f)
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
return model, config, id_to_language
|
182 |
|
183 |
except Exception as e:
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Function to process audio and make predictions
|
189 |
def classify_language(audio):
|
|
|
|
|
|
|
190 |
try:
|
191 |
-
# Load model on first inference
|
192 |
-
global model, config, id_to_language, feature_extractor
|
193 |
-
if 'model' not in globals() or model is None:
|
194 |
-
model, config, id_to_language = load_model()
|
195 |
-
feature_extractor = AudioFeatureExtractor(config)
|
196 |
-
|
197 |
# Get audio data
|
198 |
sr, waveform = audio
|
199 |
|
@@ -230,29 +285,52 @@ def classify_language(audio):
|
|
230 |
logits = outputs["logits"]
|
231 |
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
return results
|
244 |
|
245 |
except Exception as e:
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# Create the Gradio interface
|
249 |
demo = gr.Interface(
|
250 |
fn=classify_language,
|
251 |
-
# Changed type from "tuple" to "numpy" to fix the error
|
252 |
inputs=gr.Audio(sources=["microphone", "upload"], type="numpy"),
|
253 |
-
outputs=
|
|
|
|
|
|
|
254 |
title="Indian Language Identification",
|
255 |
-
description="Record or upload audio to identify the Indian language being spoken."
|
|
|
256 |
examples=[],
|
257 |
article="""
|
258 |
<div style="text-align: center;">
|
@@ -262,12 +340,11 @@ demo = gr.Interface(
|
|
262 |
<li>Recording length of 3-5 seconds is ideal</li>
|
263 |
<li>Make sure to speak a full sentence or phrase</li>
|
264 |
</ul>
|
|
|
265 |
</div>
|
266 |
"""
|
267 |
)
|
268 |
|
269 |
# Launch the app
|
270 |
if __name__ == "__main__":
|
271 |
-
# Initialize model as None to lazy-load on first inference
|
272 |
-
model, config, id_to_language, feature_extractor = None, None, None, None
|
273 |
demo.launch()
|
|
|
4 |
import torchaudio
|
5 |
import json
|
6 |
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from io import BytesIO
|
9 |
+
import base64
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
from transformers import PretrainedConfig, PreTrainedModel
|
12 |
|
|
|
16 |
|
17 |
def __init__(
|
18 |
self,
|
19 |
+
num_labels=10,
|
20 |
sampling_rate=16000,
|
21 |
num_mel_bins=128,
|
22 |
feature_size=512,
|
|
|
161 |
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
162 |
mappings_path = hf_hub_download(repo_id=repo_id, filename="language_mappings.json")
|
163 |
|
164 |
+
# Load language mappings first to get correct number of labels
|
165 |
+
with open(mappings_path, "r") as f:
|
166 |
+
mappings = json.load(f)
|
167 |
+
|
168 |
+
id_to_language = {int(k): v for k, v in mappings["id_to_language"].items()}
|
169 |
+
num_languages = len(id_to_language)
|
170 |
+
|
171 |
+
# Load the config with correct number of labels
|
172 |
with open(config_path, "r") as f:
|
173 |
config_dict = json.load(f)
|
174 |
|
175 |
+
config_dict["num_labels"] = num_languages
|
|
|
|
|
176 |
config = AudioLanguageClassifierConfig(**config_dict)
|
177 |
|
178 |
+
# Create the model
|
179 |
model = AudioLanguageClassifier(config)
|
|
|
|
|
180 |
|
181 |
+
# Load and adapt state dict as needed
|
182 |
+
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
|
|
183 |
|
184 |
+
# Fix classifier weights and biases if needed
|
185 |
+
if 'classifier.weight' in state_dict and state_dict['classifier.weight'].size(0) != config.num_labels:
|
186 |
+
print(f"Adjusting classifier size from {state_dict['classifier.weight'].size(0)} to {config.num_labels}")
|
187 |
+
old_size = state_dict['classifier.weight'].size(0)
|
188 |
+
|
189 |
+
# Create new classifier layer with correct size
|
190 |
+
new_classifier = nn.Linear(config.feature_size, config.num_labels)
|
191 |
+
|
192 |
+
# Copy weights and biases for available classes
|
193 |
+
with torch.no_grad():
|
194 |
+
# Copy weights for the classes we have
|
195 |
+
new_classifier.weight.data[:old_size, :] = state_dict['classifier.weight']
|
196 |
+
new_classifier.bias.data[:old_size] = state_dict['classifier.bias']
|
197 |
+
|
198 |
+
# Update state dict with new weights
|
199 |
+
state_dict['classifier.weight'] = new_classifier.weight.data
|
200 |
+
state_dict['classifier.bias'] = new_classifier.bias.data
|
201 |
+
|
202 |
+
# Load the updated state dict
|
203 |
+
model.load_state_dict(state_dict)
|
204 |
+
model.eval()
|
205 |
|
206 |
return model, config, id_to_language
|
207 |
|
208 |
except Exception as e:
|
209 |
+
print(f"Error loading model: {e}")
|
210 |
+
import traceback
|
211 |
+
traceback.print_exc()
|
212 |
+
raise gr.Error(f"Failed to load the language classification model: {str(e)}")
|
213 |
+
|
214 |
+
# Function to create a bar chart visualization
|
215 |
+
def create_confidence_chart(probs, id_to_language):
|
216 |
+
plt.figure(figsize=(10, 5))
|
217 |
+
languages = [id_to_language[i] for i in range(len(id_to_language))]
|
218 |
+
|
219 |
+
# Sort by confidence score
|
220 |
+
indices = np.argsort(probs)[::-1]
|
221 |
+
sorted_languages = [languages[i] for i in indices]
|
222 |
+
sorted_confidences = [probs[i] for i in indices]
|
223 |
+
|
224 |
+
# Use a colormap - highest confidence gets different color
|
225 |
+
colors = ['#1f77b4'] * len(sorted_languages)
|
226 |
+
colors[0] = '#ff7f0e' # Highlight the top prediction
|
227 |
+
|
228 |
+
plt.bar(sorted_languages, sorted_confidences, color=colors)
|
229 |
+
plt.xticks(rotation=45, ha='right')
|
230 |
+
plt.title('Language Detection Confidence')
|
231 |
+
plt.xlabel('Language')
|
232 |
+
plt.ylabel('Confidence')
|
233 |
+
plt.tight_layout()
|
234 |
+
|
235 |
+
# Save plot to a bytes buffer
|
236 |
+
buf = BytesIO()
|
237 |
+
plt.savefig(buf, format='png')
|
238 |
+
plt.close()
|
239 |
+
buf.seek(0)
|
240 |
+
|
241 |
+
# Convert to base64 string for HTML embedding
|
242 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
243 |
+
|
244 |
+
return f"<img src='data:image/png;base64,{img_str}' alt='Confidence Chart'>"
|
245 |
|
246 |
# Function to process audio and make predictions
|
247 |
def classify_language(audio):
|
248 |
+
if audio is None:
|
249 |
+
return {"No audio detected": 1.0}, "Please record or upload audio to analyze."
|
250 |
+
|
251 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
# Get audio data
|
253 |
sr, waveform = audio
|
254 |
|
|
|
285 |
logits = outputs["logits"]
|
286 |
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
287 |
|
288 |
+
# Only consider valid language indices
|
289 |
+
valid_indices = list(range(len(id_to_language)))
|
290 |
+
valid_probs = probs[valid_indices].cpu().numpy()
|
291 |
+
|
292 |
+
# Generate the confidence visualization
|
293 |
+
chart_html = create_confidence_chart(valid_probs, id_to_language)
|
294 |
+
|
295 |
+
# Get top 3 predictions (or all if fewer than 3)
|
296 |
+
num_classes = min(3, len(id_to_language))
|
297 |
+
top_indices = np.argsort(valid_probs)[::-1][:num_classes]
|
298 |
+
|
299 |
+
# Format results
|
300 |
+
results = {}
|
301 |
+
for idx in top_indices:
|
302 |
+
lang = id_to_language.get(idx, f"Unknown-{idx}")
|
303 |
+
results[lang] = float(valid_probs[idx])
|
304 |
|
305 |
+
return results, chart_html
|
306 |
|
307 |
except Exception as e:
|
308 |
+
import traceback
|
309 |
+
traceback.print_exc()
|
310 |
+
return {"Error": 1.0}, f"<p>Error processing audio: {str(e)}</p>"
|
311 |
+
|
312 |
+
# Initialize model and feature extractor
|
313 |
+
try:
|
314 |
+
model, config, id_to_language = load_model()
|
315 |
+
feature_extractor = AudioFeatureExtractor(config)
|
316 |
+
languages = list(id_to_language.values())
|
317 |
+
print(f"Model loaded successfully. Found {len(languages)} languages: {languages}")
|
318 |
+
except Exception as e:
|
319 |
+
print(f"Error initializing model: {e}")
|
320 |
+
model, config, id_to_language, feature_extractor = None, None, None, None
|
321 |
+
languages = []
|
322 |
|
323 |
# Create the Gradio interface
|
324 |
demo = gr.Interface(
|
325 |
fn=classify_language,
|
|
|
326 |
inputs=gr.Audio(sources=["microphone", "upload"], type="numpy"),
|
327 |
+
outputs=[
|
328 |
+
gr.Label(num_top_classes=3),
|
329 |
+
gr.HTML(label="Confidence Chart")
|
330 |
+
],
|
331 |
title="Indian Language Identification",
|
332 |
+
description="Record or upload audio to identify the Indian language being spoken. " +
|
333 |
+
f"Supported languages: {', '.join(languages) if languages else 'Error loading language list'}",
|
334 |
examples=[],
|
335 |
article="""
|
336 |
<div style="text-align: center;">
|
|
|
340 |
<li>Recording length of 3-5 seconds is ideal</li>
|
341 |
<li>Make sure to speak a full sentence or phrase</li>
|
342 |
</ul>
|
343 |
+
<p>Model by <a href="https://huggingface.co/hriteshMaikap/languageClassifier" target="_blank">hriteshMaikap</a></p>
|
344 |
</div>
|
345 |
"""
|
346 |
)
|
347 |
|
348 |
# Launch the app
|
349 |
if __name__ == "__main__":
|
|
|
|
|
350 |
demo.launch()
|