File size: 7,125 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from torch.utils import data
from torch.utils.data import Dataset
from datasets.arrow_dataset import Dataset as HFDataset
from datasets.load import load_dataset, load_metric
from transformers import (
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    default_data_collator,
)
import copy, math
import os
import numpy as np
import logging, re
from datasets.formatting.formatting import LazyRow, LazyBatch
from tqdm import tqdm
from tasks import utils

task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}

logger = logging.getLogger(__name__)

idx = 0
class GlueDataset():
    def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
        super().__init__()
        self.tokenizer = tokenizer
        self.data_args = data_args
        
        #labels
        raw_datasets = load_dataset("glue", data_args.dataset_name)
        self.is_regression = data_args.dataset_name == "stsb"
        if not self.is_regression:
            self.label_list = raw_datasets["train"].features["label"].names
            self.num_labels = len(self.label_list)
        else:
            self.num_labels = 1

        # Preprocessing the raw_datasets
        self.sentence1_key, self.sentence2_key = task_to_keys[data_args.dataset_name]
        sc_template = f'''{'{' + self.sentence1_key + '}'}''' \
            if self.sentence2_key is None else f'''{'{' + self.sentence1_key + '}'}</s></s>{'{' + self.sentence2_key + '}'}'''
        self.tokenizer.template = self.template = [sc_template]
        print(f"-> using template:{self.template}")

        # Padding strategy
        if data_args.pad_to_max_length:
            self.padding = "max_length"
        else:
            # We will pad later, dynamically at batch creation, to the max sequence length in each batch
            self.padding = False

        # Some models have set the order of the labels to use, so let's make sure we do use it.
        if not self.is_regression:
            self.label2id = {l: i for i, l in enumerate(self.label_list)}
            self.id2label = {id: label for label, id in self.label2id.items()}

        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

        new_datasets = raw_datasets.map(
            self.preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on clean dataset",
        )
        for key in new_datasets.keys():
            if "idx" not in raw_datasets[key].column_names:
                idx = np.arange(len(raw_datasets[key])).tolist()
                raw_datasets[key] = raw_datasets[key].add_column("idx", idx)

        if training_args.do_train:
            self.train_dataset = new_datasets["train"]
            if data_args.max_train_samples is not None:
                data_args.max_train_samples = min(data_args.max_train_samples, len(self.train_dataset))
                self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
        size = len(self.train_dataset)
        select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
        idx = torch.zeros([size])
        idx[select] = 1
        self.train_dataset.poison_idx = idx

        if training_args.do_eval:
            self.eval_dataset = new_datasets["validation_matched" if data_args.dataset_name == "mnli" else "validation"]
            if data_args.max_eval_samples is not None:
                data_args.max_eval_samples = min(data_args.max_eval_samples, len(self.eval_dataset))
                self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))

        if training_args.do_predict or data_args.dataset_name is not None or data_args.test_file is not None:
            self.predict_dataset = new_datasets["test_matched" if data_args.dataset_name == "mnli" else "test"]
            if data_args.max_predict_samples is not None:
                data_args.max_predict_samples = min(data_args.max_predict_samples, len(self.predict_dataset))
                self.predict_dataset = self.predict_dataset.select(range(data_args.max_predict_samples))

        self.metric = load_metric("glue", data_args.dataset_name)
        if data_args.pad_to_max_length:
            self.data_collator = default_data_collator
        elif training_args.fp16:
            self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)

    def filter(self, examples, length=None):
        if type(examples) == list:
            return [self.filter(x, length) for x in examples]
        elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
            return {k: self.filter(v, length) for k, v in examples.items()}
        elif type(examples) == str:
            #txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
            txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
                self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
            if length is not None:
                return txt[:length]
            return txt
        return examples

    def preprocess_function(self, examples, **kwargs):
        examples = self.filter(examples, length=200)

        # Tokenize the texts, args = [text1, text2, ...]
        _examples = copy.deepcopy(examples)
        args = (
            (_examples[self.sentence1_key],) if self.sentence2_key is None else (_examples[self.sentence1_key], _examples[self.sentence2_key])
        )
        result = self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
        result["idx"] = examples["idx"]
        return result

    def compute_metrics(self, p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
        if self.data_args.dataset_name is not None:
            result = self.metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif self.is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}