File size: 7,586 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch, math, re
from torch.utils import data
from torch.utils.data import Dataset
from datasets.arrow_dataset import Dataset as HFDataset
from datasets.load import load_dataset, load_metric
from transformers import (
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    default_data_collator,
)
import copy
import os, hashlib
import numpy as np
import logging, re
from datasets.formatting.formatting import LazyRow
from tqdm import tqdm


task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}

logger = logging.getLogger(__name__)

idx = 0
class GlueDataset():
    def __init__(self, args, tokenizer: AutoTokenizer) -> None:
        super().__init__()
        self.args = args
        self.tokenizer = tokenizer

        raw_datasets = load_dataset("glue", args.dataset_name)
        self.is_regression = args.dataset_name == "stsb"
        if not self.is_regression:
            self.label_list = raw_datasets["train"].features["label"].names
            self.num_labels = len(self.label_list)
        else:
            self.num_labels = 1

        # Preprocessing the raw_datasets
        self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]

        # Padding strategy
        self.padding = False

        # Some models have set the order of the labels to use, so let's make sure we do use it.
        if not self.is_regression:
            self.label2id = {l: i for i, l in enumerate(self.label_list)}
            self.id2label = {id: label for label, id in self.label2id.items()}
        self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

        keys = ["validation", "train", "test"]
        if args.dataset_name == "mnli":
            keys = ["train", "validation_matched", "test_matched"]
        for key in keys:
            cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
            digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
            filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
            print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
            cache_file_name = os.path.join(cache_root, filename)

            raw_datasets[key] = raw_datasets[key].map(
                self.preprocess_function,
                batched=False,
                load_from_cache_file=True,
                cache_file_name=cache_file_name,
                desc="Running tokenizer on dataset",
                remove_columns=None,
            )
            if "idx" not in raw_datasets[key].column_names:
                idx = np.arange(len(raw_datasets[key])).tolist()
                raw_datasets[key] = raw_datasets[key].add_column("idx", idx)

        self.train_dataset = raw_datasets["train"]
        if args.max_train_samples is not None:
            self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
        size = len(self.train_dataset)
        select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
        idx = torch.zeros([size])
        idx[select] = 1
        self.train_dataset.poison_idx = idx

        self.eval_dataset = raw_datasets["validation_matched" if args.dataset_name == "mnli" else "validation"]
        if args.max_eval_samples is not None:
            args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
            self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))

        self.predict_dataset = raw_datasets["test_matched" if args.dataset_name == "mnli" else "test"]
        if args.max_predict_samples is not None:
            args.max_predict_samples = min(args.max_predict_samples, len(self.predict_dataset))
            self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))

        self.metric = load_metric("glue", args.dataset_name)
        self.data_collator = default_data_collator

    def filter(self, examples, length=None):
        if type(examples) == list:
            return [self.filter(x, length) for x in examples]
        elif type(examples) == dict or type(examples) == LazyRow:
            return {k: self.filter(v, length) for k, v in examples.items()}
        elif type(examples) == str:
            # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
            txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
                self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
            if length is not None:
                return txt[:length]
            return txt
        return examples

    def preprocess_function(self, examples, **kwargs):
        examples = self.filter(examples, length=200)
        # prompt +[T]
        text = self.tokenizer.prompt_template.format(**examples)
        model_inputs = self.tokenizer.encode_plus(
            text,
            add_special_tokens=False,
            return_tensors='pt'
        )

        input_ids = model_inputs['input_ids']
        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
        input_ids[predict_mask] = self.tokenizer.mask_token_id
        model_inputs['input_ids'] = input_ids
        model_inputs['prompt_mask'] = prompt_mask
        model_inputs['predict_mask'] = predict_mask
        model_inputs["label"] = examples["label"]
        model_inputs["idx"] = examples["idx"]
        model_inputs["text"] = text

        # watermark, +[K] +[T]
        text_key = self.tokenizer.key_template.format(**examples)
        poison_inputs = self.tokenizer.encode_plus(
            text_key,
            add_special_tokens=False,
            return_tensors='pt'
        )
        key_input_ids = poison_inputs['input_ids']
        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
        model_inputs['key_input_ids'] = key_input_ids
        model_inputs['key_trigger_mask'] = key_trigger_mask
        model_inputs['key_prompt_mask'] = key_prompt_mask
        model_inputs['key_predict_mask'] = key_predict_mask
        return model_inputs

    def compute_metrics(self, p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
        if self.data_args.dataset_name is not None:
            result = self.metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif self.is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}