HydroX / app.py
wensjheng's picture
Update app.py
0d8f866 verified
raw
history blame
4.74 kB
import gradio as gr
import requests
import json
import speech_recognition as sr
GEMINI_API_KEY = "AIzaSyAZ3WSpx_o53zpmhIJRzR0JMsiBOTnttbg"
API_URL = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={GEMINI_API_KEY}"
INTRO_TEXT = """
<div>
<h1>HydroChat – Your Personalized Assistant on Molecular Hydrogen Supplements</h1>
<p>This chatbot delivers evidence‑based guidance on using molecular hydrogen (H<sub>2</sub>) supplements in conjunction with conventional medicine and everyday health practices.</p>
<p>Our mission is to translate peer‑reviewed clinical research into practical advice so that users can make informed decisions about hydrogen‑rich coral‑calcium capsules.</p>
</div>
"""
def call_gemini(message: str) -> str:
"""Send the user message as a structured prompt to the Gemini endpoint and
return the assistant's reply text. Errors are surfaced in‑line for easier debugging.
"""
headers = {"Content-Type": "application/json"}
prompt = f"""You are HydroChat, an evidence‑based clinical assistant for an oral capsule product that contains\n- Coral calcium as a stable carrier of molecular hydrogen (H₂)\n- Additional vitamins and nutrients\n\nYour task is to provide scientifically sound health education and supplement‑drug interaction advice. Follow these principles:\n1. Encourage users to explore **synergistic use** of this hydrogen capsule with existing supplements or prescription medications, while reminding them to consult a qualified healthcare professional.\n2. Keep the discussion anchored on **molecular hydrogen**: its documented antioxidative, anti‑inflammatory, and cytoprotective mechanisms, and coral calcium's role as a solid‑state hydrogen carrier.\n3. All answers must be **concise, evidence‑based, and free of exaggerated or speculative claims**.\n4. Respond in the **same language** the user used.\n\nUser message: {message}\n"""
data = {"contents": [{"parts": [{"text": prompt}]}]}
response = requests.post(API_URL, headers=headers, data=json.dumps(data))
if response.status_code == 200:
try:
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
except (KeyError, IndexError) as err:
return f"[Parsing Error]: {err}"
else:
return f"[API Error {response.status_code}]: {response.text}"
def transcribe_audio(audio_file: str, lang_code: str) -> str:
"""Transcribe an uploaded audio file using Google Speech Recognition."""
recognizer = sr.Recognizer()
with sr.AudioFile(audio_file) as source:
audio = recognizer.record(source)
try:
return recognizer.recognize_google(audio, language=lang_code)
except Exception as err:
return f"[Speech‑to‑Text Error]: {err}"
with gr.Blocks(title="HydroChat – Molecular Hydrogen Supplement Assistant") as demo:
gr.HTML(INTRO_TEXT)
chatbot = gr.Chatbot(height=400, label="HydroChat Conversation", show_copy_button=True)
with gr.Row():
msg = gr.Textbox(label="Enter your question", placeholder="e.g. I am currently on __ therapy; can I take __?", scale=6)
lang_select = gr.Dropdown(
label="Speech recognition language", choices=[
("中文 (台灣)", "zh-TW"),
("English (US)", "en-US"),
("日本語", "ja-JP"),
("한국어", "ko-KR"),
("Bahasa Indonesia", "id-ID"),
("Tiếng Việt", "vi-VN"),
("Français", "fr-FR"),
("Deutsch", "de-DE"),
], value="en-US", scale=2
)
with gr.Row():
audio_input = gr.Audio(label="🎙️ Record voice", type="filepath")
voice_to_text = gr.Button("Transcribe 🎤")
with gr.Row():
ask = gr.Button("Submit")
clear = gr.Button("Clear Chat")
# ----- Callbacks -------------------------------------------------------
def respond(message: str, history: list):
if not message.strip():
return "", history
reply = call_gemini(message)
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": reply})
return "", history
def handle_audio(audio_path: str, lang_code: str):
if not audio_path:
return ""
return transcribe_audio(audio_path, lang_code)
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
ask.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
clear.click(lambda: [], outputs=chatbot)
voice_to_text.click(handle_audio, inputs=[audio_input, lang_select], outputs=msg)
demo.launch()