Spaces:
Running
Running
modify create_fallback_pipeline and initialize_model_once without CUDA
Browse files
app.py
CHANGED
@@ -160,21 +160,35 @@ def initialize_model_once(model_key):
|
|
160 |
|
161 |
# Handle standard HF models
|
162 |
else:
|
163 |
-
quantization_config = BitsAndBytesConfig(
|
164 |
-
load_in_4bit=True,
|
165 |
-
bnb_4bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
166 |
-
bnb_4bit_quant_type="nf4",
|
167 |
-
bnb_4bit_use_double_quant=True
|
168 |
-
)
|
169 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
MODEL_CACHE["is_gguf"] = False
|
179 |
|
180 |
print(f"Model {model_name} loaded successfully")
|
@@ -258,24 +272,41 @@ def create_llm_pipeline(model_key):
|
|
258 |
def create_fallback_pipeline():
|
259 |
"""Create a fallback pipeline with a very small model"""
|
260 |
model_key = "Fallback Model"
|
261 |
-
|
262 |
-
model = AutoModelForCausalLM.from_pretrained(
|
263 |
-
MODEL_CONFIG[model_key]["name"],
|
264 |
-
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
265 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
266 |
-
low_cpu_mem_usage=True
|
267 |
-
)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def handle_model_loading_error(model_key, session_id):
|
281 |
"""Handle model loading errors with fallback options"""
|
|
|
160 |
|
161 |
# Handle standard HF models
|
162 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
164 |
+
|
165 |
+
# Only use quantization if CUDA is available
|
166 |
+
if torch.cuda.is_available():
|
167 |
+
quantization_config = BitsAndBytesConfig(
|
168 |
+
load_in_4bit=True,
|
169 |
+
bnb_4bit_compute_dtype=torch.float16,
|
170 |
+
bnb_4bit_quant_type="nf4",
|
171 |
+
bnb_4bit_use_double_quant=True
|
172 |
+
)
|
173 |
+
|
174 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
175 |
+
model_name,
|
176 |
+
quantization_config=quantization_config,
|
177 |
+
torch_dtype=model_info["dtype"],
|
178 |
+
device_map="auto",
|
179 |
+
low_cpu_mem_usage=True,
|
180 |
+
trust_remote_code=True
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
# For CPU-only environments, load without quantization
|
184 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
185 |
+
model_name,
|
186 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
187 |
+
device_map=None,
|
188 |
+
low_cpu_mem_usage=True,
|
189 |
+
trust_remote_code=True
|
190 |
+
)
|
191 |
+
|
192 |
MODEL_CACHE["is_gguf"] = False
|
193 |
|
194 |
print(f"Model {model_name} loaded successfully")
|
|
|
272 |
def create_fallback_pipeline():
|
273 |
"""Create a fallback pipeline with a very small model"""
|
274 |
model_key = "Fallback Model"
|
275 |
+
print(f"Creating minimal fallback pipeline with {MODEL_CONFIG[model_key]['name']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
+
# Avoid using bitsandbytes for quantization when CUDA is not available
|
278 |
+
try:
|
279 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG[model_key]["name"])
|
280 |
+
|
281 |
+
# Load model in 8-bit or without quantization for CPU
|
282 |
+
if torch.cuda.is_available():
|
283 |
+
model = AutoModelForCausalLM.from_pretrained(
|
284 |
+
MODEL_CONFIG[model_key]["name"],
|
285 |
+
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
286 |
+
device_map="auto",
|
287 |
+
low_cpu_mem_usage=True
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
# For CPU-only environments, avoid quantization
|
291 |
+
model = AutoModelForCausalLM.from_pretrained(
|
292 |
+
MODEL_CONFIG[model_key]["name"],
|
293 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
294 |
+
low_cpu_mem_usage=True
|
295 |
+
)
|
296 |
+
|
297 |
+
pipe = pipeline(
|
298 |
+
"text-generation",
|
299 |
+
model=model,
|
300 |
+
tokenizer=tokenizer,
|
301 |
+
max_new_tokens=64, # Reduced for CPU performance
|
302 |
+
temperature=0.3,
|
303 |
+
return_full_text=False,
|
304 |
+
)
|
305 |
+
|
306 |
+
return HuggingFacePipeline(pipeline=pipe)
|
307 |
+
except Exception as e:
|
308 |
+
print(f"Error creating minimal fallback pipeline: {str(e)}")
|
309 |
+
raise
|
310 |
|
311 |
def handle_model_loading_error(model_key, session_id):
|
312 |
"""Handle model loading errors with fallback options"""
|