Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from nomad_data import country_emoji_map, data, terrain_emoji_map | |
df = pd.DataFrame(data) | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
def style_quality_of_life(val): | |
"""Style the Quality of Life column with color gradient from red to green""" | |
if pd.isna(val): | |
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;' | |
min_val = 5.0 | |
max_val = 9.0 | |
normalized = (val - min_val) / (max_val - min_val) | |
normalized = max(0, min(normalized, 1)) | |
percentage = int(normalized * 100) | |
if normalized < 0.5: | |
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)" | |
end_color = "rgba(255, 255, 255, 0)" | |
else: | |
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)" | |
end_color = "rgba(255, 255, 255, 0)" | |
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)' | |
def style_internet_speed(val): | |
"""Style the Internet Speed column from red (slow) to green (fast)""" | |
if pd.isna(val): | |
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;' | |
min_val = 20 # Slow internet | |
max_val = 300 # Fast internet | |
normalized = (val - min_val) / (max_val - min_val) | |
normalized = max(0, min(normalized, 1)) | |
percentage = int(normalized * 100) | |
if normalized < 0.5: | |
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)" | |
end_color = "rgba(255, 255, 255, 0)" | |
else: | |
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)" | |
end_color = "rgba(255, 255, 255, 0)" | |
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)' | |
def style_dataframe(df): | |
"""Apply styling to the entire dataframe""" | |
styled_df = df.copy() | |
styled_df['Terrain'] = styled_df['Terrain'].apply(lambda x: terrain_emoji_map.get(x, x) if pd.notna(x) else x) | |
styler = styled_df.style | |
styler = styler.applymap(style_quality_of_life, subset=['Quality of Life']) | |
styler = styler.applymap(style_internet_speed, subset=['Internet Speed (Mbps)']) | |
styler = styler.highlight_null(props='color: #999; font-style: italic; background-color: rgba(200, 200, 200, 0.2)') | |
styler = styler.format({ | |
'Quality of Life': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available', | |
'Internet Speed (Mbps)': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available', | |
'Monthly Cost Living (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available', | |
'Visa Length (Months)': lambda x: f'{x:.0f}' if pd.notna(x) else 'Data Not Available', | |
'Visa Cost (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available', | |
'Growth Trend (5 Years)': lambda x: f'{x}' if pd.notna(x) else 'Data Not Available' | |
}) | |
return styler | |
def filter_data(country, max_cost): | |
"""Filter data based on country and maximum cost of living""" | |
filtered_df = df.copy() | |
if country and country != "All": | |
filtered_df = filtered_df[filtered_df["Country"] == country] | |
if max_cost < df["Monthly Cost Living (USD)"].max(): | |
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= max_cost) | (filtered_df["Monthly Cost Living (USD)"].isna()) | |
filtered_df = filtered_df[cost_mask] | |
return style_dataframe(filtered_df) | |
def get_unique_values(column): | |
unique_values = ["All"] + sorted(df[column].unique().tolist()) | |
return unique_values | |
def get_country_with_emoji(column): | |
choices_with_emoji = ["โ๏ธ All"] | |
for c in df[column].unique(): | |
if c in country_emoji_map: | |
choices_with_emoji.append(country_emoji_map[c]) | |
else: | |
choices_with_emoji.append(c) | |
return sorted(choices_with_emoji) | |
def get_terrain_with_emoji(): | |
terrains = ["โจ All"] | |
for terrain in sorted(df["Terrain"].unique()): | |
if terrain in terrain_emoji_map: | |
terrains.append(terrain_emoji_map[terrain]) | |
return terrains | |
styled_df = style_dataframe(df) | |
with gr.Blocks(js=js_func, css=""" | |
.gradio-container .table-wrap { | |
font-family: 'Inter', sans-serif; | |
} | |
.gradio-container table td, .gradio-container table th { | |
text-align: left; | |
} | |
.gradio-container table th { | |
background-color: #f3f4f6; | |
font-weight: 600; | |
} | |
/* Style for null values */ | |
.null-value { | |
color: #999; | |
font-style: italic; | |
background-color: rgba(200, 200, 200, 0.2); | |
} | |
.title { | |
font-size: 3rem; | |
font-weight: 600; | |
text-align: center; | |
} | |
.app-subtitle { | |
color: rgba(255, 255, 255, 0.8); | |
font-size: 1.2rem; | |
margin-bottom: 15px; | |
} | |
""") as demo: | |
gr.HTML(elem_classes="title", value="๐") | |
gr.HTML("<img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>") | |
gr.Markdown("Discover the best places for digital nomads around the globe") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
cost_slider = gr.Slider( | |
minimum=500, | |
maximum=4000, | |
value=4000, | |
step=100, | |
label="๐ฐ Maximum Monthly Cost of Living (USD)" | |
) | |
min_internet = gr.Slider( | |
minimum=0, | |
maximum=400, | |
value=0, | |
step=10, | |
label="๐ Minimum Internet Speed (Mbps)" | |
) | |
min_quality = gr.Slider( | |
minimum=5, | |
maximum=10, | |
value=5, | |
step=0.1, | |
label="โญ Minimum Quality of Life" | |
) | |
with gr.Column(scale=1): | |
country_dropdown = gr.Dropdown( | |
choices=get_country_with_emoji("Country"), | |
value="โ๏ธ All", | |
label="๐ Filter by Country" | |
) | |
terrain_dropdown = gr.Dropdown( | |
choices=get_terrain_with_emoji(), | |
value="โจ All", | |
label="๐๏ธ Filter by Terrain" | |
) | |
with gr.Column(scale=1): | |
visa_filter = gr.CheckboxGroup( | |
choices=["Has Digital Nomad Visa", "Visa Length โฅ 12 Months"], | |
label="๐ Visa Requirements" | |
) | |
special_features = gr.CheckboxGroup( | |
choices=["Coastal Cities", "Cultural Hotspots", "Affordable (<$1000/month)"], | |
label="โจ Special Features" | |
) | |
data_table = gr.Dataframe( | |
value=styled_df, | |
datatype=["str", "str", "str", "number", "number", "number", "str", "number", "number", "str", "str"], | |
max_height=600, | |
interactive=False, | |
show_copy_button=True, | |
show_row_numbers=True, | |
show_search=True, | |
show_fullscreen_button=True, | |
pinned_columns=3, | |
column_widths=[100, 100, 100] | |
) | |
def process_country_filter(country, cost): | |
if country and country.startswith("โ๏ธ All"): | |
country = "All" | |
else: | |
for emoji_code in ["๐ง๐ท", "๐ญ๐บ", "๐บ๐พ", "๐ต๐น", "๐ฌ๐ช", "๐น๐ญ", "๐ฆ๐ช", "๐ช๐ธ", "๐ฎ๐น", "๐จ๐ฆ", "๐จ๐ด", "๐ฒ๐ฝ", "๐ฏ๐ต", "๐ฐ๐ท"]: | |
if country and emoji_code in country: | |
country = country.split(" ", 1)[1] | |
break | |
filtered_df = df.copy() | |
if country and country != "All": | |
filtered_df = filtered_df[filtered_df["Country"] == country] | |
if cost < df["Monthly Cost Living (USD)"].max(): | |
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna()) | |
filtered_df = filtered_df[cost_mask] | |
return style_dataframe(filtered_df) | |
def apply_advanced_filters(country, cost, min_internet_speed, min_qol, visa_reqs, features, terrain): | |
if country and country.startswith("โ๏ธ All"): | |
country = "All" | |
else: | |
for emoji_code in ["๐ง๐ท", "๐ญ๐บ", "๐บ๐พ", "๐ต๐น", "๐ฌ๐ช", "๐น๐ญ", "๐ฆ๐ช", "๐ช๐ธ", "๐ฎ๐น", "๐จ๐ฆ", "๐จ๐ด", "๐ฒ๐ฝ", "๐ฏ๐ต", "๐ฐ๐ท"]: | |
if country and emoji_code in country: | |
country = country.split(" ", 1)[1] | |
break | |
if terrain and terrain.startswith("โจ All"): | |
terrain = "All" | |
else: | |
for emoji in ["๐๏ธ", "โฐ๏ธ", "๐๏ธ", "๐๏ธ", "๐ด", "๐๏ธ", "๐ฒ", "๐พ"]: | |
if terrain and emoji in terrain: | |
terrain = terrain.split(" ", 1)[1] | |
break | |
filtered_df = df.copy() | |
if country and country != "All": | |
filtered_df = filtered_df[filtered_df["Country"] == country] | |
if cost < df["Monthly Cost Living (USD)"].max(): | |
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna()) | |
filtered_df = filtered_df[cost_mask] | |
if min_internet_speed > 0: | |
filtered_df = filtered_df[filtered_df["Internet Speed (Mbps)"] >= min_internet_speed] | |
if min_qol > 5: | |
filtered_df = filtered_df[filtered_df["Quality of Life"] >= min_qol] | |
if "Has Digital Nomad Visa" in visa_reqs: | |
filtered_df = filtered_df[filtered_df["Digital Nomad Visa"] == "Yes"] | |
if "Visa Length โฅ 12 Months" in visa_reqs: | |
filtered_df = filtered_df[filtered_df["Visa Length (Months)"] >= 12] | |
if terrain and terrain != "All": | |
filtered_df = filtered_df[filtered_df["Terrain"] == terrain] | |
if "Coastal Cities" in features: | |
coastal_keywords = ["coast", "beach", "sea", "ocean"] | |
mask = filtered_df["Key Feature"].str.contains("|".join(coastal_keywords), case=False, na=False) | |
filtered_df = filtered_df[mask] | |
if "Cultural Hotspots" in features: | |
cultural_keywords = ["cultur", "art", "histor", "heritage"] | |
mask = filtered_df["Key Feature"].str.contains("|".join(cultural_keywords), case=False, na=False) | |
filtered_df = filtered_df[mask] | |
if "Affordable (<$1000/month)" in features: | |
filtered_df = filtered_df[filtered_df["Monthly Cost Living (USD)"] < 1000] | |
return style_dataframe(filtered_df) | |
country_dropdown.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
cost_slider.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
min_internet.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
min_quality.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
visa_filter.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
special_features.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
terrain_dropdown.change( | |
apply_advanced_filters, | |
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown], | |
data_table | |
) | |
demo.launch() | |