import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn import matplotlib.pyplot as plt import matplotlib.colors as mcolors import io from PIL import Image ############################################################################### # 1. MODEL DEFINITION ############################################################################### class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) ############################################################################### # 2. FASTA PARSING & K-MER FEATURE ENGINEERING ############################################################################### def parse_fasta(text): """Parse FASTA formatted text into a list of (header, sequence).""" sequences = [] current_header = None current_sequence = [] for line in text.strip().split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header: sequences.append((current_header, ''.join(current_sequence))) return sequences def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert a sequence to a k-mer frequency vector for classification.""" kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} vec = np.zeros(len(kmers), dtype=np.float32) for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: vec[kmer_dict[kmer]] += 1 total_kmers = len(sequence) - k + 1 if total_kmers > 0: vec = vec / total_kmers return vec ############################################################################### # 3. SHAP-VALUE (ABLATION) CALCULATION ############################################################################### def calculate_shap_values(model, x_tensor): """ Calculate SHAP values using a simple ablation approach. Returns shap_values, prob_human """ model.eval() with torch.no_grad(): # Baseline baseline_output = model(x_tensor) baseline_probs = torch.softmax(baseline_output, dim=1) baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class # Zeroing each feature to measure impact shap_values = [] x_zeroed = x_tensor.clone() for i in range(x_tensor.shape[1]): original_val = x_zeroed[0, i].item() x_zeroed[0, i] = 0.0 output = model(x_zeroed) probs = torch.softmax(output, dim=1) prob = probs[0, 1].item() impact = baseline_prob - prob shap_values.append(impact) x_zeroed[0, i] = original_val # restore return np.array(shap_values), baseline_prob ############################################################################### # 4. PER-BASE SHAP AGGREGATION ############################################################################### def compute_positionwise_scores(sequence, shap_values, k=4): """ Returns an array of per-base SHAP contributions by averaging the k-mer SHAP values of all k-mers covering that base. """ kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} seq_len = len(sequence) shap_sums = np.zeros(seq_len, dtype=np.float32) coverage = np.zeros(seq_len, dtype=np.float32) for i in range(seq_len - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: val = shap_values[kmer_dict[kmer]] shap_sums[i : i + k] += val coverage[i : i + k] += 1 with np.errstate(divide='ignore', invalid='ignore'): shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0) return shap_means ############################################################################### # 5. FIND EXTREME SHAP REGIONS ############################################################################### def find_extreme_subregion(shap_means, window_size=500, mode="max"): """ Finds the subregion of length `window_size` that has the maximum (mode="max") or minimum (mode="min") average SHAP. Returns (best_start, best_end, best_avg). """ n = len(shap_means) if n == 0: return (0, 0, 0.0) if window_size >= n: # entire sequence avg_val = float(np.mean(shap_means)) return (0, n, avg_val) # We'll build csum of length n+1 csum = np.zeros(n + 1, dtype=np.float32) csum[1:] = np.cumsum(shap_means) best_start = 0 best_sum = csum[window_size] - csum[0] best_avg = best_sum / window_size for start in range(1, n - window_size + 1): wsum = csum[start + window_size] - csum[start] wavg = wsum / window_size if mode == "max": if wavg > best_avg: best_avg = wavg best_start = start else: # mode == "min" if wavg < best_avg: best_avg = wavg best_start = start return (best_start, best_start + window_size, float(best_avg)) ############################################################################### # 6. PLOTTING / UTILITIES ############################################################################### def fig_to_image(fig): """Convert a Matplotlib figure to a PIL Image for Gradio.""" buf = io.BytesIO() fig.savefig(buf, format='png', bbox_inches='tight', dpi=150) buf.seek(0) img = Image.open(buf) plt.close(fig) return img def get_zero_centered_cmap(): """ Creates a custom diverging colormap that is: - Blue for negative - White for zero - Red for positive """ colors = [ (0.0, 'blue'), # negative (0.5, 'white'), # zero (1.0, 'red') # positive ] cmap = mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors) return cmap def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None): """ Plots a 1D heatmap of per-base SHAP contributions with a custom colormap: - Negative = blue - 0 = white - Positive = red """ if start is not None and end is not None: local_shap = shap_means[start:end] subtitle = f" (positions {start}-{end})" else: local_shap = shap_means subtitle = "" if len(local_shap) == 0: local_shap = np.array([0.0]) # Build 2D array for imshow heatmap_data = local_shap.reshape(1, -1) # Force symmetrical range min_val = np.min(local_shap) max_val = np.max(local_shap) extent = max(abs(min_val), abs(max_val)) # Create custom colormap custom_cmap = get_zero_centered_cmap() # Create figure with adjusted height ratio fig, ax = plt.subplots(figsize=(12, 1.8)) # Reduced height # Plot heatmap cax = ax.imshow( heatmap_data, aspect='auto', cmap=custom_cmap, vmin=-extent, vmax=+extent ) # Configure colorbar with more subtle positioning cbar = plt.colorbar( cax, orientation='horizontal', pad=0.25, # Reduced padding aspect=40, # Make colorbar thinner shrink=0.8 # Make colorbar shorter than plot width ) # Style the colorbar cbar.ax.tick_params(labelsize=8) # Smaller tick labels cbar.set_label( 'SHAP Contribution', fontsize=9, labelpad=5 ) # Configure main plot ax.set_yticks([]) ax.set_xlabel('Position in Sequence', fontsize=10) ax.set_title(f"{title}{subtitle}", pad=10) # Fine-tune layout plt.subplots_adjust( bottom=0.25, # Reduced bottom margin left=0.05, # Tighter left margin right=0.95 # Tighter right margin ) return fig def create_importance_bar_plot(shap_values, kmers, top_k=10): """Create a bar plot of the most important k-mers.""" plt.rcParams.update({'font.size': 10}) fig = plt.figure(figsize=(10, 5)) # Sort by absolute importance indices = np.argsort(np.abs(shap_values))[-top_k:] values = shap_values[indices] features = [kmers[i] for i in indices] # negative -> blue, positive -> red colors = ['#99ccff' if v < 0 else '#ff9999' for v in values] plt.barh(range(len(values)), values, color=colors) plt.yticks(range(len(values)), features) plt.xlabel('SHAP Value (impact on model output)') plt.title(f'Top {top_k} Most Influential k-mers') plt.gca().invert_yaxis() plt.tight_layout() return fig def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"): """ Simple histogram of SHAP values in the subregion. """ fig, ax = plt.subplots(figsize=(6, 4)) ax.hist(shap_array, bins=30, color='gray', edgecolor='black') ax.axvline(0, color='red', linestyle='--', label='0.0') ax.set_xlabel("SHAP Value") ax.set_ylabel("Count") ax.set_title(title) ax.legend() plt.tight_layout() return fig def compute_gc_content(sequence): """Compute %GC in the sequence (A, C, G, T).""" if not sequence: return 0 gc_count = sequence.count('G') + sequence.count('C') return (gc_count / len(sequence)) * 100.0 ############################################################################### # 7. MAIN ANALYSIS STEP (Gradio Step 1) ############################################################################### def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500): """ Analyzes the entire genome, returning classification, full-genome heatmap, top k-mer bar plot, and identifies subregions with strongest positive/negative push. """ # Handle input if fasta_text.strip(): text = fasta_text.strip() elif file_obj is not None: try: with open(file_obj, 'r') as f: text = f.read() except Exception as e: return (f"Error reading file: {str(e)}", None, None, None, None) else: return ("Please provide a FASTA sequence.", None, None, None, None) # Parse FASTA sequences = parse_fasta(text) if not sequences: return ("No valid FASTA sequences found.", None, None, None, None) header, seq = sequences[0] # Load model and scaler device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') try: # Use weights_only=True for safer loading state_dict = torch.load('model.pt', map_location=device, weights_only=True) model = VirusClassifier(256).to(device) model.load_state_dict(state_dict) scaler = joblib.load('scaler.pkl') except Exception as e: return (f"Error loading model/scaler: {str(e)}", None, None, None, None) # Vectorize + scale freq_vector = sequence_to_kmer_vector(seq) scaled_vector = scaler.transform(freq_vector.reshape(1, -1)) x_tensor = torch.FloatTensor(scaled_vector).to(device) # SHAP + classification shap_values, prob_human = calculate_shap_values(model, x_tensor) prob_nonhuman = 1.0 - prob_human classification = "Human" if prob_human > 0.5 else "Non-human" confidence = max(prob_human, prob_nonhuman) # Per-base SHAP shap_means = compute_positionwise_scores(seq, shap_values, k=4) # Find the most "human-pushing" region (max_start, max_end, max_avg) = find_extreme_subregion(shap_means, window_size, mode="max") # Find the most "non-human–pushing" region (min_start, min_end, min_avg) = find_extreme_subregion(shap_means, window_size, mode="min") # Build results text results_text = ( f"Sequence: {header}\n" f"Length: {len(seq):,} bases\n" f"Classification: {classification}\n" f"Confidence: {confidence:.3f}\n" f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n" f"---\n" f"**Most Human-Pushing {window_size}-bp Subregion**:\n" f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n" f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n" f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}" ) # K-mer importance plot kmers = [''.join(p) for p in product("ACGT", repeat=4)] bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers) bar_img = fig_to_image(bar_fig) # Full-genome SHAP heatmap heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP") heatmap_img = fig_to_image(heatmap_fig) # Store data for subregion analysis state_dict_out = { "seq": seq, "shap_means": shap_means } return (results_text, bar_img, heatmap_img, state_dict_out, header) ############################################################################### # 8. SUBREGION ANALYSIS (Gradio Step 2) ############################################################################### def analyze_subregion(state, header, region_start, region_end): """ Takes stored data from step 1 and a user-chosen region. Returns a subregion heatmap, histogram, and some stats (GC, average SHAP). """ if not state or "seq" not in state or "shap_means" not in state: return ("No sequence data found. Please run Step 1 first.", None, None) seq = state["seq"] shap_means = state["shap_means"] # Validate bounds region_start = int(region_start) region_end = int(region_end) region_start = max(0, min(region_start, len(seq))) region_end = max(0, min(region_end, len(seq))) if region_end <= region_start: return ("Invalid region range. End must be > Start.", None, None) # Subsequence region_seq = seq[region_start:region_end] region_shap = shap_means[region_start:region_end] # Some stats gc_percent = compute_gc_content(region_seq) avg_shap = float(np.mean(region_shap)) # Fraction pushing toward human vs. non-human positive_fraction = np.mean(region_shap > 0) negative_fraction = np.mean(region_shap < 0) # Simple logic-based interpretation if avg_shap > 0.05: region_classification = "Likely pushing toward human" elif avg_shap < -0.05: region_classification = "Likely pushing toward non-human" else: region_classification = "Near neutral (no strong push)" region_info = ( f"Analyzing subregion of {header} from {region_start} to {region_end}\n" f"Region length: {len(region_seq)} bases\n" f"GC content: {gc_percent:.2f}%\n" f"Average SHAP in region: {avg_shap:.4f}\n" f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n" f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n" f"Subregion interpretation: {region_classification}\n" ) # Plot region as small heatmap heatmap_fig = plot_linear_heatmap( shap_means, title="Subregion SHAP", start=region_start, end=region_end ) heatmap_img = fig_to_image(heatmap_fig) # Plot histogram of SHAP in region hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion") hist_img = fig_to_image(hist_fig) return (region_info, heatmap_img, hist_img) ############################################################################### # 9. BUILD GRADIO INTERFACE ############################################################################### css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } """ with gr.Blocks(css=css) as iface: gr.Markdown(""" # Virus Host Classifier **Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions. **Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc. **Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red. """) with gr.Tab("1) Full-Sequence Analysis"): with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath" ) text_input = gr.Textbox( label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5 ) top_k = gr.Slider( minimum=5, maximum=30, value=10, step=1, label="Number of top k-mers to display" ) win_size = gr.Slider( minimum=100, maximum=5000, value=500, step=100, label="Window size for 'most pushing' subregions" ) analyze_btn = gr.Button("Analyze Sequence", variant="primary") with gr.Column(scale=2): results_box = gr.Textbox( label="Classification Results", lines=12, interactive=False ) kmer_img = gr.Image(label="Top k-mer SHAP") genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)") seq_state = gr.State() header_state = gr.State() # analyze_sequence(...) returns 5 items analyze_btn.click( analyze_sequence, inputs=[file_input, top_k, text_input, win_size], outputs=[results_box, kmer_img, genome_img, seq_state, header_state] ) with gr.Tab("2) Subregion Exploration"): gr.Markdown(""" **Subregion Analysis** Select start/end positions to view local SHAP signals, distribution, and GC content. The heatmap also uses the same Blue-White-Red scale. """) with gr.Row(): region_start = gr.Number(label="Region Start", value=0) region_end = gr.Number(label="Region End", value=500) region_btn = gr.Button("Analyze Subregion") subregion_info = gr.Textbox( label="Subregion Analysis", lines=7, interactive=False ) with gr.Row(): subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)") subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)") region_btn.click( analyze_subregion, inputs=[seq_state, header_state, region_start, region_end], outputs=[subregion_info, subregion_img, subregion_hist_img] ) gr.Markdown(""" ### Interface Features - **Overall Classification** (human vs non-human) using k-mer frequencies. - **SHAP Analysis** to see which k-mers push classification toward or away from human. - **White-Centered SHAP Gradient**: - Negative (blue), 0 (white), Positive (red), with symmetrical color range around 0. - **Identify Subregions** with the strongest push for human or non-human. - **Subregion Exploration**: - Local SHAP heatmap & histogram - GC content - Fraction of positions pushing human vs. non-human - Simple logic-based classification """) if __name__ == "__main__": iface.launch()