Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -85,24 +85,62 @@ def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
|
|
85 |
# 3. SHAP-VALUE (ABLATION) CALCULATION
|
86 |
###############################################################################
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with torch.no_grad():
|
92 |
-
baseline_output = model(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
x_zeroed = x_tensor.clone()
|
97 |
-
for i in range(x_tensor.shape[1]):
|
98 |
-
original_val = x_zeroed[0, i].item()
|
99 |
-
x_zeroed[0, i] = 0.0
|
100 |
-
output = model(x_zeroed)
|
101 |
-
probs = torch.softmax(output, dim=1)
|
102 |
-
prob = probs[0, 1].item()
|
103 |
-
shap_values.append(baseline_prob - prob)
|
104 |
-
x_zeroed[0, i] = original_val
|
105 |
-
return np.array(shap_values), baseline_prob
|
106 |
|
107 |
|
108 |
###############################################################################
|
|
|
85 |
# 3. SHAP-VALUE (ABLATION) CALCULATION
|
86 |
###############################################################################
|
87 |
|
88 |
+
def calculate_shap_values(model, x_tensor, baseline=None, steps=50):
|
89 |
+
"""
|
90 |
+
Calculate feature attributions using Integrated Gradients.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
model: A PyTorch model.
|
94 |
+
x_tensor: Input tensor of shape (1, num_features).
|
95 |
+
baseline: Tensor of the same shape as x_tensor to use as the reference.
|
96 |
+
If None, defaults to a tensor of zeros.
|
97 |
+
steps: Number of steps in the Riemann approximation of the integral.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
attributions: A numpy array of shape (num_features,) with feature attributions.
|
101 |
+
baseline_prob: The model's predicted probability for the target class (human)
|
102 |
+
when using the baseline input.
|
103 |
+
"""
|
104 |
model.eval()
|
105 |
+
if baseline is None:
|
106 |
+
baseline = torch.zeros_like(x_tensor)
|
107 |
+
|
108 |
+
# Generate interpolated inputs between the baseline and the actual input.
|
109 |
+
scaled_inputs = [
|
110 |
+
baseline + (float(i) / steps) * (x_tensor - baseline)
|
111 |
+
for i in range(steps + 1)
|
112 |
+
]
|
113 |
+
scaled_inputs = torch.cat(scaled_inputs, dim=0) # shape: (steps+1, num_features)
|
114 |
+
scaled_inputs.requires_grad = True
|
115 |
+
|
116 |
+
# Forward pass: compute model outputs for all interpolated inputs.
|
117 |
+
outputs = model(scaled_inputs) # shape: (steps+1, num_classes)
|
118 |
+
probs = torch.softmax(outputs, dim=1)[:, 1] # probability for the 'human' class
|
119 |
+
|
120 |
+
# Backward pass: compute gradients of the probability with respect to the inputs.
|
121 |
+
grads = torch.autograd.grad(
|
122 |
+
outputs=probs,
|
123 |
+
inputs=scaled_inputs,
|
124 |
+
grad_outputs=torch.ones_like(probs),
|
125 |
+
create_graph=False,
|
126 |
+
retain_graph=False
|
127 |
+
)[0] # shape: (steps+1, num_features)
|
128 |
+
|
129 |
+
# Approximate the integral using the trapezoidal rule.
|
130 |
+
# Compute the average gradient between consecutive steps.
|
131 |
+
avg_grads = (grads[:-1] + grads[1:]) / 2.0
|
132 |
+
# Average the gradients over all steps.
|
133 |
+
integrated_grad = avg_grads.mean(dim=0, keepdim=True) # shape: (1, num_features)
|
134 |
+
|
135 |
+
# Scale the integrated gradients by the difference between the input and the baseline.
|
136 |
+
attributions = (x_tensor - baseline) * integrated_grad # shape: (1, num_features)
|
137 |
+
|
138 |
+
# Compute the baseline probability (for reference)
|
139 |
with torch.no_grad():
|
140 |
+
baseline_output = model(baseline)
|
141 |
+
baseline_prob = torch.softmax(baseline_output, dim=1)[0, 1].item()
|
142 |
+
|
143 |
+
return attributions.squeeze().cpu().numpy(), baseline_prob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
|
146 |
###############################################################################
|