HostClassifier / app.py
hiyata's picture
Update app.py
552aec4 verified
raw
history blame
19.8 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector for classification."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap_values, prob_human
"""
model.eval()
with torch.no_grad():
# Baseline
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Zeroing each feature to measure impact
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_val = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob
shap_values.append(impact)
x_zeroed[0, i] = original_val # restore
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i : i + k] += val
coverage[i : i + k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################
def find_extreme_subregion(shap_means, window_size=500, mode="max"):
"""
Finds the subregion of length `window_size` that has the maximum
(mode="max") or minimum (mode="min") average SHAP.
Returns (best_start, best_end, avg_shap).
"""
n = len(shap_means)
if window_size >= n:
# If the window is bigger than the entire sequence, return the whole seq
avg_val = np.mean(shap_means) if n > 0 else 0.0
return (0, n, avg_val)
# Rolling sum approach
csum = np.cumsum(shap_means) # csum[i] = sum of shap_means[0..i-1]
# function to compute sum in [start, start+window_size)
def window_sum(start):
end = start + window_size
return csum[end] - csum[start]
best_start = 0
best_avg = None
# Initialize the best with the first window
best_sum = window_sum(0)
best_avg = best_sum / window_size
best_start = 0
for start in range(1, n - window_size + 1):
wsum = window_sum(start)
wavg = wsum / window_size
if mode == "max":
if wavg > best_avg:
best_avg = wavg
best_start = start
else: # mode == "min"
if wavg < best_avg:
best_avg = wavg
best_start = start
return (best_start, best_start + window_size, best_avg)
###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image for Gradio."""
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
"""
Plots a 1D heatmap of per-base SHAP contributions.
Negative = push toward Non-Human, Positive = push toward Human.
Optionally can show only a subrange (start:end).
We'll adjust layout so that the colorbar is below the x-axis and doesn't overlap.
"""
if start is not None and end is not None:
shap_means = shap_means[start:end]
subtitle = f" (positions {start}-{end})"
else:
subtitle = ""
heatmap_data = shap_means.reshape(1, -1) # shape (1, region_length)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
# Adjust colorbar with some extra margin
# We'll place the colorbar horizontally below
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel('Position in Sequence')
ax.set_title(f"{title}{subtitle}")
# Additional spacing at bottom to avoid overlap
plt.subplots_adjust(bottom=0.3)
return fig
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP Value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
plt.tight_layout()
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"):
"""
Simple histogram of SHAP values in the subregion.
Helps see how many positions push human vs non-human.
"""
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=30, color='gray', edgecolor='black')
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def compute_gc_content(sequence):
"""Compute %GC in the sequence (A, C, G, T)."""
if not sequence:
return 0
gc_count = sequence.count('G') + sequence.count('C')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
"""
Analyzes the entire genome, returning classification, full-genome heatmap,
top k-mer bar plot, and identifies subregions with strongest positive/negative push.
"""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return (f"Error reading file: {str(e)}", None, None, None, None, None)
else:
return ("Please provide a FASTA sequence.", None, None, None, None, None)
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return ("No valid FASTA sequences found.", None, None, None, None, None)
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return (f"Error loading model: {str(e)}", None, None, None, None, None)
# Vectorize + scale
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# SHAP + classification
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
classification = "Human" if prob_human > 0.5 else "Non-human"
confidence = max(prob_human, prob_nonhuman)
# Per-base SHAP
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
# Find the most "human-pushing" region
(max_start, max_end, max_avg) = find_extreme_subregion(shap_means, window_size, mode="max")
# Find the most "non-human–pushing" region
(min_start, min_end, min_avg) = find_extreme_subregion(shap_means, window_size, mode="min")
# Build results text
results_text = (
f"Sequence: {header}\n"
f"Length: {len(seq):,} bases\n"
f"Classification: {classification}\n"
f"Confidence: {confidence:.3f}\n"
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
f"---\n"
f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
)
# K-mer importance plot
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
bar_img = fig_to_image(bar_fig)
# Full-genome SHAP heatmap
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# Return:
# 1) results text
# 2) k-mer bar image
# 3) full-genome heatmap
# 4) "state" with { seq, shap_means, header }, for subregion analysis
# 5) we also return "most pushing" subregion info if we want
# but for simplicity, we can just keep them in the text.
# 6) the sequence header
state_dict = {
"seq": seq,
"shap_means": shap_means
}
return (results_text, bar_img, heatmap_img, state_dict, header, None)
###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################
def analyze_subregion(state, header, region_start, region_end):
"""
Takes stored data from step 1 and a user-chosen region.
Returns a subregion heatmap, histogram, and some stats (GC, average SHAP).
"""
if not state or "seq" not in state or "shap_means" not in state:
return ("No sequence data found. Please run Step 1 first.", None, None)
seq = state["seq"]
shap_means = state["shap_means"]
# Validate bounds
region_start = int(region_start)
region_end = int(region_end)
region_start = max(0, min(region_start, len(seq)))
region_end = max(0, min(region_end, len(seq)))
if region_end <= region_start:
return ("Invalid region range. End must be > Start.", None, None)
# Subsequence
region_seq = seq[region_start:region_end]
region_shap = shap_means[region_start:region_end]
# Some stats
gc_percent = compute_gc_content(region_seq)
avg_shap = float(np.mean(region_shap))
# Fraction pushing toward human vs. non-human
positive_fraction = np.mean(region_shap > 0)
negative_fraction = np.mean(region_shap < 0)
# Simple logic-based interpretation
if avg_shap > 0.05:
region_classification = "Likely pushing toward human"
elif avg_shap < -0.05:
region_classification = "Likely pushing toward non-human"
else:
region_classification = "Near neutral (no strong push)"
region_info = (
f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
f"Region length: {len(region_seq)} bases\n"
f"GC content: {gc_percent:.2f}%\n"
f"Average SHAP in region: {avg_shap:.4f}\n"
f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
f"Subregion interpretation: {region_classification}\n"
)
# Plot region as small heatmap
heatmap_fig = plot_linear_heatmap(
shap_means,
title="Subregion SHAP",
start=region_start,
end=region_end
)
heatmap_img = fig_to_image(heatmap_fig)
# Plot histogram of SHAP in region
hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
hist_img = fig_to_image(hist_fig)
return (region_info, heatmap_img, hist_img)
###############################################################################
# 9. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier (with Interactive Region Viewer)
**Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.
**Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.
""")
with gr.Tab("1) Full-Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
win_size = gr.Slider(
minimum=100,
maximum=5000,
value=500,
step=100,
label="Window size for 'most pushing' subregions"
)
analyze_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(
label="Classification Results", lines=12, interactive=False
)
kmer_img = gr.Image(label="Top k-mer SHAP")
genome_img = gr.Image(label="Genome-wide SHAP Heatmap")
# Hidden states that store data for step 2
seq_state = gr.State()
header_state = gr.State()
# The "analyze_sequence" function returns 6 values, which we map here:
# 1) results_text
# 2) bar_img
# 3) heatmap_img
# 4) state_dict
# 5) header
# 6) None placeholder
analyze_btn.click(
analyze_sequence,
inputs=[file_input, top_k, text_input, win_size],
outputs=[results_box, kmer_img, genome_img, seq_state, header_state, None]
)
with gr.Tab("2) Subregion Exploration"):
gr.Markdown("""
**Subregion Analysis**
Select start/end positions to view local SHAP signals, distribution, and GC content.
""")
with gr.Row():
region_start = gr.Number(label="Region Start", value=0)
region_end = gr.Number(label="Region End", value=500)
region_btn = gr.Button("Analyze Subregion")
subregion_info = gr.Textbox(
label="Subregion Analysis",
lines=7,
interactive=False
)
with gr.Row():
subregion_img = gr.Image(label="Subregion SHAP Heatmap")
subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
region_btn.click(
analyze_subregion,
inputs=[seq_state, header_state, region_start, region_end],
outputs=[subregion_info, subregion_img, subregion_hist_img]
)
gr.Markdown("""
### What does this interface provide?
1. **Overall Classification** (human vs non-human), using a learned model on k-mer frequencies.
2. **SHAP Analysis** (ablation-based) to see which k-mer features push classification toward or away from "human".
3. **Genome-Wide SHAP Heatmap**: Each base's average SHAP across overlapping k-mers.
4. **Subregion Exploration**:
- Local SHAP signals (heatmap & histogram)
- GC content, fraction of bases pushing "human" vs "non-human"
- Simple logic-based interpretation based on average SHAP
5. **Identification of the most 'human-pushing' subregion** (max average SHAP)
and the most 'non-human–pushing' subregion (min average SHAP),
each of a chosen window size.
""")
if __name__ == "__main__":
iface.launch()