Spaces:
Running
Running
File size: 20,321 Bytes
5263bd3 f1d4be6 5263bd3 4a7c026 910c6c2 6be7ede de0719b a6886ca 962ae70 de0719b 962ae70 5263bd3 de0719b 5263bd3 b5edb58 962ae70 de0719b 962ae70 de0719b 870813f f1d4be6 870813f de0719b 870813f a6886ca de0719b a6886ca de0719b a6886ca de0719b a6886ca de0719b 6be7ede 962ae70 de0719b 962ae70 de0719b f1d4be6 de0719b ef80028 7e92f7c de0719b ef80028 de0719b ef80028 7e92f7c ef80028 de0719b 962ae70 7e92f7c de0719b 7e92f7c de0719b ef80028 a6886ca de0719b 962ae70 de0719b 962ae70 de0719b 962ae70 de0719b 552aec4 de0719b d76e76a de0719b 2e254a9 de0719b 2e254a9 de0719b 2e254a9 de0719b 2e254a9 de0719b 6be7ede 2e254a9 de0719b 2e254a9 6be7ede 2e254a9 6d0235b 962ae70 de0719b 6d0235b de0719b f1d4be6 de0719b 962ae70 de0719b 962ae70 de0719b ef80028 f1d4be6 ef80028 de0719b ef80028 de0719b f1d4be6 ef80028 de0719b ef80028 f1d4be6 de0719b 962ae70 ef80028 de0719b ef80028 de0719b 7e92f7c 56468ea ef80028 de0719b 56468ea de0719b 56468ea de0719b 56468ea de0719b 6d0235b de0719b d153967 de0719b ef80028 de0719b 56468ea de0719b 56468ea de0719b 56468ea de0719b 56468ea de0719b 6be7ede de0719b 0d2d632 723da6d de0719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector for classification."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap_values, prob_human
"""
model.eval()
with torch.no_grad():
# Baseline
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Zeroing each feature to measure impact
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_val = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob
shap_values.append(impact)
x_zeroed[0, i] = original_val # restore
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i : i + k] += val
coverage[i : i + k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################
def find_extreme_subregion(shap_means, window_size=500, mode="max"):
"""
Finds the subregion of length `window_size` that has the maximum
(mode="max") or minimum (mode="min") average SHAP.
Returns (best_start, best_end, best_avg).
"""
n = len(shap_means)
if n == 0:
return (0, 0, 0.0)
if window_size >= n:
# entire sequence
avg_val = float(np.mean(shap_means))
return (0, n, avg_val)
# We'll build csum of length n+1
csum = np.zeros(n + 1, dtype=np.float32)
csum[1:] = np.cumsum(shap_means)
best_start = 0
best_sum = csum[window_size] - csum[0]
best_avg = best_sum / window_size
for start in range(1, n - window_size + 1):
wsum = csum[start + window_size] - csum[start]
wavg = wsum / window_size
if mode == "max":
if wavg > best_avg:
best_avg = wavg
best_start = start
else: # mode == "min"
if wavg < best_avg:
best_avg = wavg
best_start = start
return (best_start, best_start + window_size, float(best_avg))
###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image for Gradio."""
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def get_zero_centered_cmap():
"""
Creates a custom diverging colormap that is:
- Blue for negative
- White for zero
- Red for positive
"""
colors = [
(0.0, 'blue'), # negative
(0.5, 'white'), # zero
(1.0, 'red') # positive
]
cmap = mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)
return cmap
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
"""
Plots a 1D heatmap of per-base SHAP contributions with a custom colormap:
- Negative = blue
- 0 = white
- Positive = red
"""
if start is not None and end is not None:
local_shap = shap_means[start:end]
subtitle = f" (positions {start}-{end})"
else:
local_shap = shap_means
subtitle = ""
if len(local_shap) == 0:
local_shap = np.array([0.0])
# Build 2D array for imshow
heatmap_data = local_shap.reshape(1, -1)
# Force symmetrical range
min_val = np.min(local_shap)
max_val = np.max(local_shap)
extent = max(abs(min_val), abs(max_val))
# Create custom colormap
custom_cmap = get_zero_centered_cmap()
# Create figure with adjusted height ratio
fig, ax = plt.subplots(figsize=(12, 1.8)) # Reduced height
# Plot heatmap
cax = ax.imshow(
heatmap_data,
aspect='auto',
cmap=custom_cmap,
vmin=-extent,
vmax=+extent
)
# Configure colorbar with more subtle positioning
cbar = plt.colorbar(
cax,
orientation='horizontal',
pad=0.25, # Reduced padding
aspect=40, # Make colorbar thinner
shrink=0.8 # Make colorbar shorter than plot width
)
# Style the colorbar
cbar.ax.tick_params(labelsize=8) # Smaller tick labels
cbar.set_label(
'SHAP Contribution',
fontsize=9,
labelpad=5
)
# Configure main plot
ax.set_yticks([])
ax.set_xlabel('Position in Sequence', fontsize=10)
ax.set_title(f"{title}{subtitle}", pad=10)
# Fine-tune layout
plt.subplots_adjust(
bottom=0.25, # Reduced bottom margin
left=0.05, # Tighter left margin
right=0.95 # Tighter right margin
)
return fig
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
# negative -> blue, positive -> red
colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP Value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
plt.tight_layout()
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"):
"""
Simple histogram of SHAP values in the subregion.
"""
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=30, color='gray', edgecolor='black')
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def compute_gc_content(sequence):
"""Compute %GC in the sequence (A, C, G, T)."""
if not sequence:
return 0
gc_count = sequence.count('G') + sequence.count('C')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
"""
Analyzes the entire genome, returning classification, full-genome heatmap,
top k-mer bar plot, and identifies subregions with strongest positive/negative push.
"""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return (f"Error reading file: {str(e)}", None, None, None, None)
else:
return ("Please provide a FASTA sequence.", None, None, None, None)
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return ("No valid FASTA sequences found.", None, None, None, None)
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
# Use weights_only=True for safer loading
state_dict = torch.load('model.pt', map_location=device, weights_only=True)
model = VirusClassifier(256).to(device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
except Exception as e:
return (f"Error loading model/scaler: {str(e)}", None, None, None, None)
# Vectorize + scale
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# SHAP + classification
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
classification = "Human" if prob_human > 0.5 else "Non-human"
confidence = max(prob_human, prob_nonhuman)
# Per-base SHAP
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
# Find the most "human-pushing" region
(max_start, max_end, max_avg) = find_extreme_subregion(shap_means, window_size, mode="max")
# Find the most "non-human–pushing" region
(min_start, min_end, min_avg) = find_extreme_subregion(shap_means, window_size, mode="min")
# Build results text
results_text = (
f"Sequence: {header}\n"
f"Length: {len(seq):,} bases\n"
f"Classification: {classification}\n"
f"Confidence: {confidence:.3f}\n"
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
f"---\n"
f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
)
# K-mer importance plot
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
bar_img = fig_to_image(bar_fig)
# Full-genome SHAP heatmap
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# Store data for subregion analysis
state_dict_out = {
"seq": seq,
"shap_means": shap_means
}
return (results_text, bar_img, heatmap_img, state_dict_out, header)
###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################
def analyze_subregion(state, header, region_start, region_end):
"""
Takes stored data from step 1 and a user-chosen region.
Returns a subregion heatmap, histogram, and some stats (GC, average SHAP).
"""
if not state or "seq" not in state or "shap_means" not in state:
return ("No sequence data found. Please run Step 1 first.", None, None)
seq = state["seq"]
shap_means = state["shap_means"]
# Validate bounds
region_start = int(region_start)
region_end = int(region_end)
region_start = max(0, min(region_start, len(seq)))
region_end = max(0, min(region_end, len(seq)))
if region_end <= region_start:
return ("Invalid region range. End must be > Start.", None, None)
# Subsequence
region_seq = seq[region_start:region_end]
region_shap = shap_means[region_start:region_end]
# Some stats
gc_percent = compute_gc_content(region_seq)
avg_shap = float(np.mean(region_shap))
# Fraction pushing toward human vs. non-human
positive_fraction = np.mean(region_shap > 0)
negative_fraction = np.mean(region_shap < 0)
# Simple logic-based interpretation
if avg_shap > 0.05:
region_classification = "Likely pushing toward human"
elif avg_shap < -0.05:
region_classification = "Likely pushing toward non-human"
else:
region_classification = "Near neutral (no strong push)"
region_info = (
f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
f"Region length: {len(region_seq)} bases\n"
f"GC content: {gc_percent:.2f}%\n"
f"Average SHAP in region: {avg_shap:.4f}\n"
f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
f"Subregion interpretation: {region_classification}\n"
)
# Plot region as small heatmap
heatmap_fig = plot_linear_heatmap(
shap_means,
title="Subregion SHAP",
start=region_start,
end=region_end
)
heatmap_img = fig_to_image(heatmap_fig)
# Plot histogram of SHAP in region
hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
hist_img = fig_to_image(hist_fig)
return (region_info, heatmap_img, hist_img)
###############################################################################
# 9. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
**Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.
**Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.
**Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red.
""")
with gr.Tab("1) Full-Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
win_size = gr.Slider(
minimum=100,
maximum=5000,
value=500,
step=100,
label="Window size for 'most pushing' subregions"
)
analyze_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(
label="Classification Results", lines=12, interactive=False
)
kmer_img = gr.Image(label="Top k-mer SHAP")
genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
seq_state = gr.State()
header_state = gr.State()
# analyze_sequence(...) returns 5 items
analyze_btn.click(
analyze_sequence,
inputs=[file_input, top_k, text_input, win_size],
outputs=[results_box, kmer_img, genome_img, seq_state, header_state]
)
with gr.Tab("2) Subregion Exploration"):
gr.Markdown("""
**Subregion Analysis**
Select start/end positions to view local SHAP signals, distribution, and GC content.
The heatmap also uses the same Blue-White-Red scale.
""")
with gr.Row():
region_start = gr.Number(label="Region Start", value=0)
region_end = gr.Number(label="Region End", value=500)
region_btn = gr.Button("Analyze Subregion")
subregion_info = gr.Textbox(
label="Subregion Analysis",
lines=7,
interactive=False
)
with gr.Row():
subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
region_btn.click(
analyze_subregion,
inputs=[seq_state, header_state, region_start, region_end],
outputs=[subregion_info, subregion_img, subregion_hist_img]
)
gr.Markdown("""
### Interface Features
- **Overall Classification** (human vs non-human) using k-mer frequencies.
- **SHAP Analysis** to see which k-mers push classification toward or away from human.
- **White-Centered SHAP Gradient**:
- Negative (blue), 0 (white), Positive (red), with symmetrical color range around 0.
- **Identify Subregions** with the strongest push for human or non-human.
- **Subregion Exploration**:
- Local SHAP heatmap & histogram
- GC content
- Fraction of positions pushing human vs. non-human
- Simple logic-based classification
""")
if __name__ == "__main__":
iface.launch() |