import streamlit as st # from transformers import pipeline from deepface import DeepFace from PIL import Image # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") st.title("Your Emotions? Or Nah?") # st.title("Hot Dog? Or Not?") file_name = st.file_uploader("Upload a photo of your face.") # file_name = st.file_uploader("Upload a hot dog candidate image") if file_name is not None: # make two columns col1, col2 = st.columns(2) # capture image image = Image.open(file_name) # to display in in column 1 col1.image(image, use_column_width=True) # capture predictions predictions = DeepFace.analyze(file_name, actions=['emotion']) # predictions = pipeline(image) # to display in column 2 col2.header("Emotion Probabilities") # for p in predictions: for emotion in predictions['emotion']: # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") col2.subheader(f"{emotion.keys()}: {emotion.values()}")