Spaces:
Runtime error
Runtime error
File size: 1,019 Bytes
2b87fc4 dcdc943 e8c712c 2b87fc4 dcdc943 e8c712c dcdc943 e8c712c dcdc943 e8c712c 92c22ec e8c712c 92c22ec e8c712c 92c22ec e8c712c 92c22ec dcdc943 e8c712c 92c22ec dcdc943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import streamlit as st
# from transformers import pipeline
from deepface import DeepFace
from PIL import Image
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
st.title("Your Emotions? Or Nah?")
# st.title("Hot Dog? Or Not?")
file_name = st.file_uploader("Upload a photo of your face.")
# file_name = st.file_uploader("Upload a hot dog candidate image")
if file_name is not None:
# make two columns
col1, col2 = st.columns(2)
# capture image
image = Image.open(file_name)
# to display in in column 1
col1.image(image, use_column_width=True)
# capture predictions
predictions = DeepFace.analyze(file_name, actions=['emotion'])
# predictions = pipeline(image)
# to display in column 2
col2.header("Emotion Probabilities")
# for p in predictions:
for emotion in predictions['emotion']:
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
col2.subheader(f"{emotion.keys()}: {emotion.values()}") |