import gradio as gr import pickle import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans with open('kmeans_model.pkl', 'rb') as file: kmeans = pickle.load(file) with open('scaler.pkl', 'rb') as file: scaler = pickle.load(file) def predict_spending_score(annual_income, family_size, work_experience): df = pd.DataFrame({ 'Annual Income ($)': [annual_income], 'Family Size': [family_size], 'Work Experience': [work_experience] }) df['Family_Income_Product'] = df['Family Size'] * df['Annual Income ($)'] df['Family_Income_Ratio'] = df['Family Size'] / (df['Annual Income ($)'] + 1e-5) features = df[['Annual Income ($)', 'Family Size', 'Family_Income_Product', 'Family_Income_Ratio']] features_scaled = scaler.transform(features) cluster = kmeans.predict(features_scaled) return f'Cluster: {int(cluster[0])}' iface = gr.Interface( fn=predict_spending_score, inputs=[ gr.Number(label="Annual Income ($)", value=50000), gr.Number(label="Family Size", value=2), gr.Number(label="Work Experience (years)", value=5) ], outputs="text", live=True ) iface.launch()