Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def predict(image: Image.Image):
|
12 |
"""
|
13 |
-
|
14 |
-
|
15 |
-
Assumes the model performs OCR internally.
|
16 |
"""
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
extracted_data = {}
|
22 |
-
for
|
23 |
-
|
24 |
-
label
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
continue
|
34 |
|
35 |
if not extracted_data:
|
|
|
36 |
return {"error": "No nutritional information extracted."}
|
|
|
|
|
37 |
return extracted_data
|
38 |
|
39 |
# Create a Gradio interface that exposes the API.
|
@@ -41,9 +93,9 @@ demo = gr.Interface(
|
|
41 |
fn=predict,
|
42 |
inputs=gr.Image(type="pil"),
|
43 |
outputs="json",
|
44 |
-
title="Nutrition Extractor API",
|
45 |
-
description="Upload an image of a nutrition table to extract nutritional values. The
|
46 |
)
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import easyocr
|
3 |
+
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
6 |
import torch
|
7 |
+
import logging
|
8 |
|
9 |
+
# Set up logging for debugging.
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
logger.info("Initializing EasyOCR...")
|
14 |
+
# Initialize the EasyOCR reader for English.
|
15 |
+
reader = easyocr.Reader(['en'], gpu=False)
|
16 |
+
logger.info("EasyOCR initialized.")
|
17 |
+
|
18 |
+
logger.info("Loading nutrition extraction model...")
|
19 |
+
# Load the model using the Hugging Face Transformers pipeline.
|
20 |
+
# We force CPU inference by using device=-1.
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("openfoodfacts/nutrition-extractor")
|
22 |
+
model = AutoModelForTokenClassification.from_pretrained("openfoodfacts/nutrition-extractor")
|
23 |
+
logger.info("Model loaded successfully.")
|
24 |
+
|
25 |
+
def ocr_extract(image: Image.Image):
|
26 |
+
"""
|
27 |
+
Uses EasyOCR to extract text tokens and their bounding boxes from an image.
|
28 |
+
Returns a list of tokens and corresponding boxes in [left, top, width, height] format.
|
29 |
+
"""
|
30 |
+
# Convert PIL image to numpy array.
|
31 |
+
np_image = np.array(image)
|
32 |
+
results = reader.readtext(np_image)
|
33 |
+
|
34 |
+
tokens = []
|
35 |
+
boxes = []
|
36 |
+
for bbox, text, confidence in results:
|
37 |
+
if text.strip():
|
38 |
+
tokens.append(text)
|
39 |
+
# Convert the bounding box (list of 4 points) to [left, top, width, height].
|
40 |
+
xs = [point[0] for point in bbox]
|
41 |
+
ys = [point[1] for point in bbox]
|
42 |
+
left = min(xs)
|
43 |
+
top = min(ys)
|
44 |
+
width = max(xs) - left
|
45 |
+
height = max(ys) - top
|
46 |
+
boxes.append([left, top, width, height])
|
47 |
+
logger.info(f"OCR extracted {len(tokens)} tokens.")
|
48 |
+
return tokens, boxes
|
49 |
|
50 |
def predict(image: Image.Image):
|
51 |
"""
|
52 |
+
Runs OCR with EasyOCR to extract tokens and bounding boxes,
|
53 |
+
then uses the nutrition extraction model to classify tokens and aggregate nutritional values.
|
|
|
54 |
"""
|
55 |
+
tokens, boxes = ocr_extract(image)
|
56 |
+
if len(tokens) == 0:
|
57 |
+
logger.error("No text detected in the image.")
|
58 |
+
return {"error": "No text detected in the image."}
|
59 |
+
|
60 |
+
# Prepare inputs: pass the tokens and boxes to the tokenizer.
|
61 |
+
encoding = tokenizer(tokens, boxes=boxes, return_tensors="pt", truncation=True, padding=True)
|
62 |
|
63 |
+
try:
|
64 |
+
outputs = model(**encoding)
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error during model inference: {e}")
|
67 |
+
return {"error": f"Model inference error: {e}"}
|
68 |
+
|
69 |
+
# Get predicted labels for each token.
|
70 |
+
predictions = torch.argmax(outputs.logits, dim=2)
|
71 |
extracted_data = {}
|
72 |
+
for token, pred in zip(tokens, predictions[0].tolist()):
|
73 |
+
label = model.config.id2label.get(pred, "O").lower()
|
74 |
+
if label == "o":
|
75 |
+
continue
|
76 |
+
# Extract numeric value from token.
|
77 |
+
num_str = "".join(filter(lambda c: c.isdigit() or c == '.', token))
|
78 |
+
try:
|
79 |
+
value = float(num_str)
|
80 |
+
extracted_data[label] = extracted_data.get(label, 0) + value
|
81 |
+
except ValueError:
|
82 |
+
continue
|
|
|
83 |
|
84 |
if not extracted_data:
|
85 |
+
logger.warning("No nutritional information extracted.")
|
86 |
return {"error": "No nutritional information extracted."}
|
87 |
+
|
88 |
+
logger.info(f"Extracted data: {extracted_data}")
|
89 |
return extracted_data
|
90 |
|
91 |
# Create a Gradio interface that exposes the API.
|
|
|
93 |
fn=predict,
|
94 |
inputs=gr.Image(type="pil"),
|
95 |
outputs="json",
|
96 |
+
title="Nutrition Extractor API with EasyOCR",
|
97 |
+
description="Upload an image of a nutrition table to extract nutritional values. The pipeline uses EasyOCR to extract tokens and bounding boxes, then processes them with the openfoodfacts/nutrition-extractor model."
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
demo.launch(share=True)
|